
Making Linux TCP Fast

Yuchung Cheng Neal Cardwell

Google Inc.

{ycheng,ncardwell}@google.com

Abstract

We describe several major changes that have recently been
made and are still underway within the Linux TCP implemen-
tation. The Linux send engine has been refactored to decouple
loss recovery from congestion control, allowing the sending
rate to be independent of packet loss. RACK loss recovery
reworks loss detection to rest on a more general foundation
of time-based analysis, instead of counting duplicate ACKs
or sequence numbers. BBR congestion control sets the send-
ing rate based on the network’s delivery rate and limits the
data in-flight based on the estimated BDP, instead of react-
ing only to packet losses. Both algorithms are founded on a
high-performance packet scheduler. The scheduler sizes the
TSO bursts and releases the packets based on the rate specified
by BBR congestion control, and mixes packets from different
flows. These tightly-coupled but modularly-structured mech-
anisms together produce a low-latency and high-throughput
TCP stack.
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Introduction

The Linux TCP stack is today’s most feature-rich TCP im-
plementation. It’s widely used, running on more than a bil-
lion hosts, from powerful servers to cell phones and simple
embedded systems. While TCP’s wire protocol has changed
little over the last 35 years, the internal algorithms continue
to improve in order to suit modern networks and applications.
The last publication covering the overall design of Linux TCP
dates from 2002 [17]. Fast-forwarding to 2016, the design
has evolved significantly, both to implement new features and
to consolidate existing ones for simplicity. Instead of iterat-
ing through the dozens of new TCP protocol features added to
Linux over the years, we focus on the architecture and design
principles of some major performance-critical pieces: loss re-
covery, congestion control, segmentation, and pacing. We
focus on the sender-side mechanisms and show how all these
pieces work together with recent new algorithms written from
scratch: RACK loss detection and the BBR congestion con-
trol algorithm.
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Figure 1: Linux TCP sender architecture



The Architecture of Linux TCP
Over the years, the Linux TCP implementation has been re-
structured to decouple functionalities, primarily to implement
new features. Figure 1 shows the sender-side architecture of
Linux TCP. As with most TCP implementations, with Linux
most of the performance-critical decisions are made at the
sender. The figure depicts the sequence of decisions that a
Linux TCP sender makes as it prepares to send packets out
on the wire.

The first functionality is the reliable delivery module,
which decides what to send next. It processes the ACK and
SACK information to track which packets were delivered.
Using this information, the module also estimates if a packet
was lost and should thus be retransmitted (before sending new
data). It also tracks the send and delivery timing information
to estimate the RTT and the delivery rate.

The second functionality is the congestion control, which
decides the maximum amount of data to keep in-flight in the
network (a.k.a. the congestion window), and how fast to
send that data (pacing rate). This determines how quickly
the sender clocks out packets when an application writes data
into a socket or ACKs arrive. Linux TCP congestion con-
trol has a modular architecture, where the core decisions are
made entirely by a kernel module. Linux has many different
TCP congestion control algorithms, each available as a kernel
module.

The third functionality is a high-performance packet
scheduling system, which implements several mechanisms
that are tightly coupled together. First, TSO autosizing se-
lects the size of chunks of data that TCP hands off to lower
layers to transmit in a single burst. TSO autosizing strikes
a balance between desiring larger chunks for CPU efficiency
and desiring smaller chunks to launch smaller bursts into the
network. TCP Small Queues (TSQ) performs local flow con-
trol to reduce latency by limiting the amount of data in the
qdisc. Pacing and fair queuing are both implemented in the
fq/pacing qdisc; they mix TSO packets from different flows
and release them according to the rate specified by their con-
gestion control.

The following sections discuss each piece of the Linux
TCP architecture in turn.

Detect losses quickly by tracking time
Over the years, Linux has implemented a rich set of loss re-
covery algorithms [2, 4, 1, 3, 15, 16]. Nevertheless, together
they still fail to address these problems:

• Lost retransmissions due to traffic policers [9] and burst
losses often cause retransmissions to be lost again.

• Tail drops at the end of application data units.

• Frequent reordering, where often the tail packet is re-
ordered before the rest, so the reordering degree measured
in terms of packet distance is a full congestion window.

Prior fast recovery algorithms counting duplicate acknowl-
edgments [2] or sequences [15] often fail to trigger ACK-
driven repairs in the above situations. The repair would run
in a stop-and-wait process and eventually stall the congestion
control due to the slow delivery process.

Instead of counting out-of-order packets, a better approach
is to monitor the transmission time of every packet not yet
delivered. The goal is to retransmit lost packets quickly:
within an RTT plus a small window to accommodate reorder-
ing (e.g., a fraction of RTT). In addition, the sender may send
(or retransmit) one ”probe” packet after an RTT of radio si-
lence, to solicit an ACK to trigger ACK-driven repairs. The
repair only resorts to the conservative retransmission timeout
(RTO) and resetting cwnd to 1 packet when every packet was
dropped to the floor, which signals extreme congestion, or
even link failure.

The implementation of that strategy is RACK [6] plus TLP
[8]. The main idea behind RACK is that if a packet has been
delivered out of order, then the packets sent chronologically
before that were either lost or reordered. RACK uses a per-
packet transmission timestamp and widely deployed SACK
options to conduct time-based inferences. With the Tail Loss
Probe (TLP) approach, after 1.5 RTT of radio silence the
sender sends a ”scout” packet to solicit an ACK to generate a
delivery event so RACK can continue.

Once loss recovery has determined which packets were
lost, and so the sender knows what to send next, then con-
gestion control estimates how fast those packets should be
sent.

Congestion Control
Finding a good operating point
Since the 1980s, the Internet has largely used loss-based con-
gestion control algorithms (mainly Reno [14] and its succes-
sor CUBIC [13]), which use loss as a signal to slow down.
However, loss-based congestion control is ill-suited to many
of today’s networks. Increasingly, packet loss does not signal
a good operating point for congestion control. On the last-
mile links of today’s Internet, loss-based congestion control
causes the infamous bufferbloat problem [11], since it keeps
the often bloated buffers there near full, often causing seconds
of needless queuing delay. On today’s high-speed long-haul
links using commodity switches with shallow buffers, loss-
based congestion control has abysmal throughput because it
overreacts to losses caused by transient traffic bursts briefly
filling the buffers even when the link may be mostly unuti-
lized.

Since packet loss does not signal a good operating point for
congestion control, ideally senders would find the best oper-
ating point themselves, largely independent of the losses they
see. The best operating point for a network involves flows (a)
sending at a rate matching the bandwidth available to the con-
nection, and (b) maintaining a volume of data in flight in the
network that matches the BDP (bandwidth-delay product, or
bandwidth * (round-trip propagation delay)). That maximizes
throughput (fills the pipes) while minimizing delay (keeping
queues empty) [10].

Finding this operating point has been elusive, largely be-
cause it is impossible to measure bandwidth and round-trip
propagation delay simultaneously: to measure the pipe’s
bandwidth, the sender must send increasingly faster until it
estimates the pipe is full, which creates some amount of
queue, which means the sender can no longer measure the



round-trip propagation delay.

BBR: Bottleneck Bandwidth and RTT
BBR (”Bottleneck Bandwidth and RTT”) [5] is a new con-
gestion control algorithm added for Linux TCP in Linux v4.9.
It tackles the problem of finding a good operating point by se-
quentially probing bandwidth and RTT, and using those mea-
surements to maintain an explicit model estimating the band-
width and round-trip propagation delay of the pipe.

On the arrival of each ACK, BBR measures the current de-
livery rate over the last round trip, and feeds this through a
windowed max-filter to estimate the recent bottleneck band-
width. Conversely, it uses a windowed min-filter to estimate
the recent round trip propagation delay. The max-filtered
bandwidth and min-filtered RTT estimates form BBR’s model
of the network pipe.

Using its model, BBR sets control parameters to govern
its sending behavior. The primary control is the pacing rate:
BBR paces alternately slightly faster or slower than the es-
timated bottleneck bandwidth. The conventional congestion
window (cwnd), which limits the number of packets in flight,
is BBR’s secondary control. BBR sets the cwnd to a small
multiple of the estimated BDP, in order to allow full uti-
lization and bandwidth probing while bounding the potential
queue at the bottleneck.

When a BBR connection starts, it performs an exponential
search to quickly probe the bottleneck bandwidth (doubling
its sending rate each round trip, like slow start). However,
instead of continuing until it loses a packet, or until delay or
ACK spacing reaches some threshold (like CUBIC’s Hystart
[12]), it uses its model of the pipe: it estimates the pipe is
full when the estimated bandwidth has stopped growing. At
that point, it exits its initial rapid-growth phase and reduces
its pacing rate to drain the estimated queue. Then BBR enters
steady state.

In steady state, BBR first paces faster to probe for more
bandwidth, and then paces slower to drain any queue that cre-
ated if no more bandwidth was available, and then cruises at
the estimated bandwidth to utilize the pipe without creating
excess queue. Occasionally, if needed, it sends significantly
slower to probe the round-trip propagation delay.

Benefits of BBR’s approach
At one end of the spectrum, consider shallow-buffered net-
works. Since BBR uses its model of the pipe’s delivery rate
instead of backing off based on random incidental losses, it
is resilient to the random packet loss that is common with
coincident bursts in shallow buffers. For example, while CU-
BIC requires less than one loss per 30 million packets to fully
utilize a 1Gbps link with 100ms RTT, BBR can fully utilize
links at up to 15% loss rates. At typical WAN loss rates, the
difference is stark: in a 30-second bulk transfer with a 10
Gbps bottleneck, 100ms RTT, and 1% packet loss rate, CU-
BIC gets around 3.3 Mbps, and BBR gets 9150 Mbps (more
than 2700x higher).

At the other end of the spectrum, consider the bloated
buffers common in today’s last-mile links. Here, BBR offers
low latency, because its model of bandwidth and round-trip
propagation delay allow it to maintain a number of packets

in flight that closely matches the BDP, fully utilizing the path
with small queues and low latency. For example, consider
a path with a 10 Mbps bottleneck link and 40ms RTT, with
a (not uncommon) 1000-packet bottleneck buffer. BBR can
fully utilize this link, but with a median RTT 25x lower than
CUBIC (43 ms instead of 1.09 secs).

High-performance packet scheduler
We have presented the protocol-level algorithms designed to
achieve high networking performance (high bandwidth, low
queue, and fast loss recovery) from a single flow’s perspec-
tive. However, these algorithms demand an efficient packet
scheduler that can release the packets into the network at
the time specified by the congestion control as precisely as
possible. At the same time, the packets from different flows
should be mixed in a way that is fair and reduces head-of-line
blocking. In addition, the software solution should be CPU-
efficient and maintain short local queues on the sender. We
will show how Linux’s networking stack meets these chal-
lenging goals with TSO autosizing, pacing, fair queuing, and
TCP Small Queues (TSQ) tightly working together.

TSO autosizing
To allow low CPU utilization even at high speeds, today’s
Linux TCP senders typically employ segmentation offload
mechanisms. With segmentation offloading, TCP deals with
chunks larger than the packets on the wire, and then the NIC
(with TSO) or Linux (with GSO) segments the chunks into
MTU-sized packets.

In Linux, TSO autosizing selects the size of these chunks
of data (represented in Linux as an skb) that TCP hands off
to lower layers to transmit in a single burst. TSO autosiz-
ing has to make a trade-off here. On one hand, it desires
larger chunks to increase CPU efficiency, by making fewer
trips down through the entire network stack, and receiving
fewer transmit completion interrupts from the NIC. On the
other hand, it desires smaller chunks to launch smaller bursts
into the network, leading to less data in the queues of the net-
work, which reduces queuing latency and packet loss rates.
TSO autosizing strikes a balance by sizing the bursts to 1
millisecond times the sending rate instructed by the conges-
tion control (bounded to a max of 64KB). This allows fast
flows (512 Mbps or faster) to send full 64KB bursts while
slow flows send proportionally smaller bursts.

Pacing
While many of today’s NICs have some mechanism to spread
packets, BBR - and likely future congestion control algo-
rithms - requires a degree of fine-grained pacing support that
most NICs do not yet support. Linux’s solution for pac-
ing is the efficient fq/pacing qdisc, which uses a per-qdisc
nanosecond-granularity timer to schedule packets. The pac-
ing component takes the chunks created by TSO autosizing
and spreads them out in time, placing gaps of silence in be-
tween the chunks, according to the sending rate specified on
the socket by the congestion control module. Every packet’s
earliest release time is (almost) precisely specified by its con-
gestion control module; that release time changes dynami-
cally.



Fair queuing
Fair queuing, as its name implies, provides fair bandwidth
sharing between flows. It does this by providing the ab-
straction of a separate queue for each flow, scheduling TSO
chunks from each queue in a round-robin fashion that is fair
on a byte-by-byte basis [7]. Fair queuing greatly improves
fairness and reduces head-of-line blocking among flows. Fur-
thermore, like pacing, fair queuing increase traffic entropy by
mixing flows and thus spreading out packets from each given
flow; this can lead to lower queuing delays and fewer packet
drops in the middle of the network.

TCP Small Queues (TSQ)
TCP Small Queues (TSQ) performs local flow control, lim-
iting the amount of data in the queues on the sending host.
Like TSO autosizing, TSQ has its own balancing act, keeping
the queues small to reduce latency and head-of-line blocking
(HoLB), while keeping the queues just large enough to en-
sure the queues on the sending host - including both qdisc
and NIC transmit queues - can feed the qdisc layer and NIC
fast enough to reach full utilization.

To strike this balance and implement this flow control
scheme, TSQ logic is invoked first at the beginning and sec-
ond at the end of the lifetime of an skb. First, when TCP is
making a decision about whether to hand off the skb to the
lower layers, TSQ allows no more than 262 KB (4 full-size
TSO skbs) bytes to be enqueued locally in the sending host
(including the optional qdisc layer, and NIC transmit queue).
Second, when the NIC finishes transmitting an skb, just be-
fore freeing the skb it makes a callback up into TCP to let
it know that the packet has left the machine; at that point,
the TSQ logic allows TCP to hand off another TSO skb to
the lower layers. Each transmit completion can allow TCP
to hand off another TSO skb, keeping the flow in balance
while the sender host queues remain small and the NIC re-
mains fully utilized.

BBR’s relation to Pacing, Fair Queuing, TSQ, and
TSO
By design, BBR strives to reduce the bottleneck queue in
the network with its per-flow congestion control algorithm,
which estimates the bandwidth available to the flow and uses
pacing (rate-shaping) queues on the sending host to move the
bottleneck to the sending host, where waiting packets can-
not cause network queuing delays or packet loss. This means
pacing is critical for BBR. As such, BBR relies on fq/pacing
in Linux and would greatly benefit from future hardware sup-
port for such fine-grained packet scheduling.

Pacing is particularly crucial when an idle flow restarts.
Traditional TCP congestion control algorithms needed an
”ACK clock”, a stream of incoming ACKs, to tell it how fast
it could safely send; so when restarting from idle they would
face a dilemma: either start from scratch and slow-start from
a small initial cwnd, or skip that and send the entire con-
gestion window at once, leading to line-rate bursts into the
network, causing both long queues and high losses. Pacing
solves that dilemma: pacing allows a congestion control al-
gorithm (like BBR) that has a bandwidth estimate to release

packets at the estimated bottleneck rate after an idle period,
allowing the restarting flow to quickly fill the pipe without
causing queuing delay or packet loss.

Because BBR is designed to move the bottleneck to the
sending host’s queues, this increases the importance of fair
queuing and TCP Small Queues. These mechanisms greatly
improve fairness and queueing across flows when the sending
host itself is the bottleneck (e.g., a host serving hundreds of
thousands of TCP flows).

Having a good estimate of the bottleneck bandwidth, un-
like other congestion control algorithms, BBR can decide on
the optimal TSO size required to saturate the link, at accept-
able CPU usage, without causing collateral damage and con-
gestion.

Conclusion
Over the history of the Internet, there have been numerous
changes to the networking ecosystem, including applications,
protocols, software defined networking, kernel bypass, and
faster hardware. However, for decades, TCP has remained
the main vehicle for carrying most of the bytes on the Inter-
net. Although its wire protocol remains largely the same for
legacy reasons, the internal algorithms in the Linux TCP im-
plementation have evolved dramatically, making Linux TCP
better and faster.

Within the Linux TCP implementation, we’ve described
several large-scale changes that have recently been made, and
are still underway. The RACK loss recovery algorithm is re-
working loss recovery to rest on a foundation of time-based
analysis, to recover losses quickly by making maximal use of
all the information available to the sender, even in the face
of the reordering and retransmissions common today. The
Linux send engine has been refactored to decouple loss re-
covery from congestion control, allowing the sending rate to
be independent of packet loss. This enabled BBR congestion
control, which sets the sending rate based on the network’s
delivery rate, and limits the data in-flight based on the esti-
mated BDP. This, in turn, moves the rate-shaping bottleneck
to the queues of the sending host, which reduces queuing de-
lays and packet loss in the network, and leverages the already-
excellent packet scheduling infrastructure in the Linux net-
working stack: TSO autosizing, pacing, fair queuing, and
TCP Small Queues.

The ideas behind the recent innovations in the Linux
TCP stack are widely applicable, to most any networking
transport or OS. The Linux TCP implementation will con-
tinue to evolve, and in particular there is ongoing work
to deploy, test, and improve BBR; to pitch in, join the
mailing list https://groups.google.com/forum/
#!forum/bbr-dev.
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