ORACLE
@ PayPal ®©utbrain

Is ;', SALESPREDICT
FJ) Searanien saves Somvenniow

fo
. mongoDB

Z
-~
S
N |
= |

\ J
¥ f I
X |
s]
/ ‘ > a5] ¥, .:
m{ -
=i 7
re f K 7 4 :

Improving TC Filters insertion rate
Mellanox

Guy Shattah, Rony Efraim GG BCIEE
Connect. Accelerate. Qutperform:

Contents

Mellanox

*Why are we here?
"Work done so far and what are the next steps

= TC Handle lookup flow
" The problem and progress so far

" Flow of a TC filter request

" The RTNL lock

= Suggestion 1: Breaking the Lock

= Suggestion 2: Multi-Threaded Batch under the Lock
= Executing accumulated work

= Comparison

© 2017 Mellanox Technologies

Why are we here? A\

Mellanox

= SDN becomes more and more relevant.
" OVS is the most popular SDN switch.

= Growing humber of concurrent connections
leads to increased HW offload demand.

= Connections are offloaded by
Inserting filters rules.

= OVS datapath can be implemented using
the Linux TC subsystem.

© 2017 Mellanox Technologies

Brief: Work done so far and what are the next steps

Mellanox

= Until recently, existing TC code allowed
for a poor rules/sec update rate.

= A work done recently has significantly
Improved insertion rate (~50,000 rules/sec)

= Despite recent iImprovements - users
yearn for a rate of 1M/sec or better.

= Achieving a major improvement will
demand a profound change.

© 2017 Mellanox Technologies 4

TC Handle lookup flow

Mellanox

" |nput is a TC filter request

1. TC flow:

1. Search for device In a linear list.

2

3.
4.

| 00
-1Nd

KUp specified qdisc.
a class attached to the gdisc.

1IN0

the classifier with the priority.

2.Inside the classifier:

6. Lookup rule handle — classifier (*get)() method searches in a linear list.

/. Set Action - classifier (*change)() method reads

add

a new matching rule and action to act upon matching.

1t 1 bucket ot (k) = 0 _--—-__
itional parameters from “struct * nlattr®, then sets | 3 T3 T3

bucket at (k) = 2 P o *ED

bucket ot f1k) = 3 ¥

[0 i

action resides in hash table with buckets of linked-lists =« 4 T T &

© 2017 Mellanox Technologies

The problem and the solution

Mellanox

Inside the classifier:
6. Lookup rule handle — classifier (*get)() method searches in a linear list

/. Set Action: The classifier (*change)() method searches in hash table
with buckets of linked-lists.

Performance Comparison
1000

= (*get)() method’s linked-list was replaced by IDR.

= (*change)() - method’s which was using action
hash table with buckets of linked-lists was
replaced by IDR.

conds

= Current stable insertion rate: ~50,000 rules/sec
(Tested on E3120 Xeon) —e—withnewIDRcode —e—old codewithout patches

© 2017 Mellanox Technologies 6

Flow of a TC filter request

Mellanox

1. Netlink layer

2. RTnetLink Layer

= Accept message
Netlink/Rtnetlink

= Lock RTNL

» Sendto TC TC
3. TC layer Classifer
4. Classifier Hardware
5. HW (optional)

© 2017 Mellanox Technologies

The RTNL lock

Mellanox

= The RTNL Lock is a mutex located inside rtnetlink.

= Used to make sure no two threads may enter the
rtnetlink subsystem at the same time.

Florian Westphal - Yesterday: “The widespread use of the RTNL lock in
all major network configuration paths is a growing pain point,
Le. a task adding an IP address prevents another from
seemingly unrelated tasks such as dumping 1 Cclassifiers.
Furthermore, some code paths can hold the rinl mutex for
very long times (in the order of several hundreds of
milliseconds in some cases). Rmetlink 1s a netlink subsystem
used to mspect or change networking refated configuration.”

M .

© 2017 Mellanox Technologies

The RTNL lock (cont.)

Mellanox

RTNL lock effect on TC:

1. User process sends multiple TC filter requests in parallel (each
one In separate thread) to the TC layer (via rtnetlink layer)

2. RTNL lock forces one message at a time!

3. tc_ctl_tfilter() method can’t run in parallel ®

© 2017 Mellanox Technologies

Suggestion 1: Breaking the Lock

Mellanox

= Breaking big lock into smaller locks.

= Difficult task: many kernel methods and drivers rely on the lock.

" |n order to remove it, one (or many) would have to analyze very carefully
all the code paths called after the lock. Find critical sections and
iImplement smaller granularity locks.

>
" Florlan W. Recently started working on this issue. 5“&,‘5;‘3’

* There Is a long way to go before the work is completed.

* Once the work i1s complete - vendors still have to make
necessary adjustments to remove RTNL dependencies.

© 2017 Mellanox Technologies 10

Suggestion 2: Multi-Threaded Batch under the Lock

Mellanox

= Don’t we already have netlink-batch support?
* Existing netlink-batch is provided for convenience

* Does not promote parallel execution.
= Suggestion 2.A: Multiple netlink messages.
= Suggestion 2.B: Compound netlink Message

= |[ssues:
» Parallel processing implies all actions mustn’t have
dependencies one on each other.
» Parallel processing forces kernel to run a multi-threaded code
even when the user application is single-threaded (and user possibly
does not want to utilize additional CPUSs).

© 2017 Mellanox Technologies

Suggestion 2.A: Multiple netlink messages

Mellanox

= Extending netlink interface by introducing batch operations.
= Adding two new netlink flags: NLM_F BEGIN and NLM_F END.

- NLM_F_BEGIN : start accumulating messages.
- NLM_F _END :initiate parallel execution of accumulated messages.

=" Technical detalls :

* Accumulated messages list has to be maintained per user, with pre-defined quota
(to avoid overflow) and with some aging mechanism.

* Suggestion differs from the existing solution by the use of ‘begin’ and ‘end’
flags to explicitly specify that all the actions included are to be executed In
parallel, not one after another.

© 2017 Mellanox Technologies 12

Suggestion 2.B: Compound netlink Message

Mellanox

" Introducing a compound TC message, RTM_BATCHTFILTER.

* Message encapsulates multiple TC filter requests

* Facilitating work by sending all messages to be executed in TC layer in parallel
at once.

struct nlmsghdr // netlink header
. struct tcmsg_batch_hdr

. struct tcmsg

struct *nlattr

. struct tcmsg_batch_hdr

struct tcmsg

. struct *nlattr

= Technical detalls :

struct tcmsg_batch_hdr {
~u32 tcmsg_len;
~ule tcmsg_type;

~ul6 tcmsg_flags;
}

X NOUThs WNEREO

. last entry: struct tcmsg_batch_hdr with size = 0;

© 2017 Mellanox Technologies 13

Executing accumulated work

Mellanox

= Accumulated work Is executed in a workqueue

* In suggestion 2.A (Multiple netlink messages):
- a result is returned per netlink message.

* In suggestion 2.B (Compound netlink Message):
- On success: netlink success message.

; daemon(
- On failures: netlink message contains list — :
'] cpu_workqu
of pairs (msg index, error value). e @ @ @

CPU] /v daemonl|
Workqueue EHUE R
eue_ struct

daemon?2

CPU2

~,

cpu_workqu

© 2017 Mellanox Technologies 14

Comparison PiviN

Mellanox

2.A Multiple netlink Messages

v Process first message immediately x Requires NLM_F END to start processing

© 2017 Mellanox Technologies 15

2.B Compound TC message

v" No slow-down memcpy() x memcpy() each message

v No internal bookkeeping x Keep a list of messages per process/user
v No internal list size limitation x Each list mustn't exceed predefined size
v Always a single system-call x Possibly requires more than one system-call

v RTNL lock is always taken once x RTNL lock might be taken more than once

v Delivers better performance v' More generic

ORACLE

@ PayPaI ®utbrain

s ;', SALESPREDICT
FJ) Searanien saves Somvenniow

fo
. mongoDB

/1 i

\ |
d f _—r
4 |
£]
/ \ y s | e
m’; g
=y
re f K : g -

Mellanox

Thank You

Connect. Accelerate. Qutperform:

