
1

Arachne: Large Scale Data Center
SDN Testing

Alex Aring
Jamal Hadi Salim

2

Agenda

● Clos + SDN context and history

● Introduce Arachne

● Arachne Addressing + Naming

● L2 vs L3 mode

● Deployment Layout

● Workflow

● Challenges And Solutions

● Future

3

In the Beginning Was The Phone
Network.....

● Removing Humans From The Bridge

– Almon B. Strowger, undertaker,
● 1892

● Scaling and Modularity

– Charles Clos, scholar,
● 1952

● Separation of Control and Datapath

– Phone phreaks and companies, SS7

● 1975

4

Data Centre: 3-stage Clos Network

● Can wheel in a new Rack at Runtime

– Connect cables to Spines and power up

● Arachne Design Goal

5

Data Centre: 5-stage Clos Network

● Can Truck in a PoD at Runtime

– connect cables to the Zones, power up

● Arachne Design Goal

6

Data Centre: Clos Network

● Trucking-In a PoD

7

Software Define Networking

● Separate Control and Datapath Networks

8

Separating Control Path

● Use Management switch port

9

Introducing Arachne

● Control/Datapath testing

– Small to very large scale testing of resources, controllers,
applications

● Cheaply: CPU, Memory

● Any SDN approach that uses Clos infrastructure

– Plug in a rack or a PoD

● Reuse or create new open source components

– MUST be Linux netdev based

● Yes, we are known Linux bigots

10

Reuse Attempts

● VMs

– Cumulus VX

– Consumed too much memory and CPU

● Docker

– Too much resources and complexity

● Mininet

– Lightweight

– Too specific to OF+OVS

– Proprietary topology definitions

● Ansible

– Static playbook inventories vs dynamic design

– More dependencies with packaging

11

Arachne Components

● Patched Iproute2

● Patched Linux Kernel

– Bridge, IP forwarding

● Python 3

● Dot file

● Qemu

12

Arachne Addressing Design: E.164

● Influence from E.164 in the telephony world

– Country Code => ZoneID

– Area Code => PoDID

– Subscriber => Depends on type of node (host/leaf/spine/zone)

● Why geographical Addressing?

– Simplifies automation (wheel/truck in a rack/PoD)

– Simplifies debugging

– Simplifies switching/routing

– Simplifies policy management

13

Arachne Addressing Design

14

Arachne Node Name Design

● Host

– H<Hostid>_R<Rackid>_P<Podid>_Z<Zoneid>

● Leaf

– L<Leafid>_R<Rackid>_P<Podid>_Z<Zoneid>

● Spine

– S<Spineid>_P<Podid>_Z<Zoneid>

● Zone

– ZS<Zone switch id>_Z<Zoneid>

15

Arachne L2 Mode

● Simple
● One big broadcast domain

● STP to avoid loops

16

Arachne L3 Mode

● Static Routing
● ECMP in presence of multiple next hops

17

Getting Intimate With Arachne

● Constitutes two parts

– A fabric design component

– A fabric weaving component

18

Arachne Container Deployment

● Each node (host/leaf/spine/zone) is a container
● Switches are Linux Bridges inside containers
● Veth as a port/cable

19

Arachne Workflow

20

Network Intent Description

● Number of zones Needed

– Only one zone is supported for now

● Number of PoDs in a Zone

● Number of spines in a PoD

● Number of racks per PoD

● Number of hosts per rack

– Arachne supports a single leaf switch per rack for
now

21

Demo: Designing With Arachne

22

Demo: Weaving with Arachne

23

Trials And Tribulations:
Tooling Issues

● Iproute2 hostname

– Iproute2 patch

● Veth names

– Fix our naming conventions

● DHCP and IP binding

– Use dhcp client hooks for binding

● IPv6 stateless autoconfig

– Disable IPv6

● Python2/3 mess

– Static binaries; use pyinstaller

24

Trials And Tribulations:
Bridge Issues

● LLC not respected by veth

– Patch kernel

● Bridge favoring lowest MAC address as source

– Management ARP confusion

– Fix MAC address on bridge

25

Trials And Tribulations:
Scaling Issues

● Management DHCP slowing us down

– Use static IP addresses

– 192./8 saga

– 192.168/16 insufficient

● Use 25./8

● Bridge port limit of 1024

– Patch Kernel

● ARP table overflow

– Tweak ARP GC params

● Shared fs resulting in running out of fds

– Increase fd limits

26

Future Work

● Runtime Addition of Racks and PoDs

● Publish numbers on large size networks

● Use embedded NIC switches and physical
switches

● IPv6

● 7-stage Clos

● Constrained Design Templates

● Chaos Monkey

● Open Source

27

Attribution: Images

● “Women operators working at McGill Montreal,
Quebec, Canada”

– https://commons.wikimedia.org/wiki/File:Telepho
ne_exchange_Montreal_QE3_33.jpg

● Original Clos Network

– https://commons.wikimedia.org/wiki/File:Closnetwor
k.png

● HP PoD

– http://storagenerve.com/wp-content/uploads/2010/
03/DSC00086.jpg

https://commons.wikimedia.org/wiki/File:Telephone_exchange_Montreal_QE3_33.jpg
https://commons.wikimedia.org/wiki/File:Telephone_exchange_Montreal_QE3_33.jpg
https://commons.wikimedia.org/wiki/File:Closnetwork.png
https://commons.wikimedia.org/wiki/File:Closnetwork.png
http://storagenerve.com/wp-content/uploads/2010/03/DSC00086.jpg
http://storagenerve.com/wp-content/uploads/2010/03/DSC00086.jpg

	Intro
	Agenda
	Bellheads
	3-stage clos
	5-stage close
	Real PoD
	SDN
	Management Port
	Arachne Intro
	Reuse
	Components
	E164
	Addressing
	Naming
	L2Mode
	L3Mode
	Arachne HLV
	Deployment
	Workflow
	Intent Descriptio
	Design
	Weaving
	Challenges1
	Challenges2
	Challenges3
	Future
	Attribution

