
Notes on IPsec Offload using Intel 10Gbe

Netdev 2.2

• Shannon Nelson
• Oracle Corp
• November 2017

(updated post-conference)

TL;DR

• Niantic and family have IPsec HW offload
– Intel 10GbE NIC and LOM – 82599, x520, x540, x550

• Driver patches are in development

• Basic Encryption/Decryption offload is working

2

Why Do I Care?

● Oracle customers already have the NICs
● No new $$'s needed to help our customers make use of it
● Something to experiment on while driving further development
● I used to work for Intel on the ixgbe and related drivers
● Sowmini told me to

3

NIC Timeline

• 2009 – initial NIC and driver release
– no Linux IPsec offload available in the network stack
– some support in Windows PROset drivers

• 2016 – HW offload work in XFRM
– early ixgbe hw offload work from Joshua Hay

• 2017 – initial HW offload merged into upstream kernel
– support in Mellanox Innova mlx5e released
– ixgbe support in progress

4

Background work

• Studied the public data sheet
• Reviewed Mellanox and XFRM code for hints
• Studied early attempt at adding to ixgbe
• Cajoled Intel for guidance

5

Theory – Engine Setup
• Set NETIF_F_HW_ESP in netdev features at probe
• Don't waste chip power when not offloading

– Don't start the engine until first SA is offloaded
– Stop the engine when last SA is removed

• Bits and pieces
– SW tables to track HW table contents for reload on device resets
– Set netdev->xfrmdev_ops for offload functions
– Stop Rx and Tx datapaths and wait to drain
– Increase IFG and tweak buffer-full threshold
– Enable offload engine then enable SA lookups

6

Theory – SA Storage

• NDO ops: xdo_dev_state_add, xdo_dev_state_delete, ...

• Chip tables
– Tx: 128 bit Key, 32 bit Salt (1024)
– Rx: Key, Salt, SPI, Mode, IPidx (1024) ; IP addrs (128)

● CAM (content-addressable mem) for faster IPaddr/SPI lookups – not cleared on reset

• 2-step Load/Read Operation
– Load a bounce register
– Write index register to move input to table slot
– Reverse for reading

7

Theory – Tx Offload
• XFRM Stack sets up packet data

– Inserts IPsec header & trailer into packet, no encryption
– Sets up skb->sp with SA selection handle

• Driver writes Tx Context Descriptor
– Bits for ESP/AH, Encryption, trailer length, Tx SA Key table index

• Driver writes Tx Send Descriptor
– Bit for IPsec offload triggers use of IPsec context info
– Engine encrypts data, twiddles ICV, csum, counter fields as needed

8

Theory – Rx Offload

• Engine watches for IPsec header in packets
– Search for for SA Key using SPI, dest IP, and IPv4/6
– Decrypt, check resulting ICV
– Set status bits to signal IPsec found and any decode errors

• Driver reads Rx Writeback descriptor status
– IPsec found, ESP/AH, and 2 bits for success/error status
– No indication of SA used, so SW also must do lookup
– Add offload status to skb->sp

• XFRM Receive strips off ESP header & trailer

9

Current Status – It's Alive

• IPv4 only so far
• aead only with 128bit rfc4106(gcm(aes))
• 1024 keys with 256 IP addresses
• Checksum and TSO offload support not yet implemented
• Performance not worth measuring yet

– (post conference note: 7+ Gbps on a 10GbE connection with simple iperf, no csum, no tso)

10

Challenges – XFRM API

• Error handling details
– Failed SA add didn't delete (unwind) offload from driver

● c5d4d7d8316 xfrm: Fix deletion of offloaded SAs on failure.
– Failed SA offload messed up the reference count

● 67a63387b14 xfrm: Fix negative device refcount on offload failure.

•

11

Challenges – Documentation

• Minimal-to-none XFRM API documentation
– https://netdevconf.org/1.2/slides/oct7/08_2_IPsec_workshop_Boris_Pismenny.pdf

• IPsec in iproute2
– Difficult and incomplete man pages and command line help

• 82599, x540 datasheets
– Typical datasheet – sketchy info, takes experimentation and interpretation
– Gets better with x540 and x550

12

Challenges – Documentation

• Example – byte order of key, spi, and ip address
– What order do I use in the ip command?
– What order do they come into the driver from XFRM api?
– What order do they need to be installed in the chip tables?
– How will these change between SPARC and Intel arch?

•

13

Challenges – legacy driver

• Older 82598 definitions clash with newer 82599 bits
– Rx error status descriptor fields
– Tx descriptor bits
– IPsec register fields

•

14

Challenges – NIC weirdness

• Registers not cleared on reset
– CAM – content addressable memory for faster lookups

• Experimentation needed for order of operations
– Getting the offload setup steps in just the right

• Support from Intel has been slow
– Many many thanks to Jesse Brandeburg for stepping in to help

15

Performance

● tbd
– (post conference note:

 10Gbe connection with simple iperf
SW ipsec: ~300 Mbps
HW offload: 7+ Gbps, no csum, no tso)

16

To Do

● Enable checksum and TSO support
● Add IPv6 support
● Add tunnel support
● Replace simple table lookup with hashed lists
● Fix up documentation
● Performance comparisons with QAT

17

Test setup example – tcp.all
• Left:

– ip x p add dir out src 14.0.0.52/24 dst 14.0.0.70/24 proto tcp tmpl proto esp src 14.0.0.52 dst 14.0.0.70 spi 0x07 mode
transport reqid 0x07

– ip x p add dir in src 14.0.0.70/24 dst 14.0.0.52/24 proto tcp tmpl proto esp dst 14.0.0.52 src 14.0.0.70 spi 0x07 mode
transport reqid 0x07

– ip x s add proto esp src 14.0.0.52 dst 14.0.0.70 spi 0x07 mode transport reqid 0x07 replay-window 32 aead
'rfc4106(gcm(aes))' 0x44434241343332312423222114131211f4f3f2f1 128 sel src 14.0.0.52/24 dst 14.0.0.70/24 proto tcp

– ip x s add proto esp dst 14.0.0.52 src 14.0.0.70 spi 0x07 mode transport reqid 0x07 replay-window 32 aead
'rfc4106(gcm(aes))' 0x44434241343332312423222114131211f4f3f2f1 128 sel src 14.0.0.70/24 dst 14.0.0.52/24 proto tcp

• Right:
– ip x p add dir out src 14.0.0.70/24 dst 14.0.0.52/24 proto tcp tmpl proto esp src 14.0.0.70 dst 14.0.0.52 spi 0x07 mode

transport reqid 0x07
– ip x p add dir in src 14.0.0.52/24 dst 14.0.0.70/24 proto tcp tmpl proto esp dst 14.0.0.70 src 14.0.0.52 spi 0x07 mode

transport reqid 0x07
– ip x s add proto esp src 14.0.0.70 dst 14.0.0.52 spi 0x07 mode transport reqid 0x07 replay-window 32 aead

'rfc4106(gcm(aes))' 0x44434241343332312423222114131211f4f3f2f1 128 sel src 14.0.0.70/24 dst 14.0.0.52/24 proto tcp
offload dev eth4 dir out

– ip x s add proto esp dst 14.0.0.70 src 14.0.0.52 spi 0x07 mode transport reqid 0x07 replay-window 32 aead
'rfc4106(gcm(aes))' 0x44434241343332312423222114131211f4f3f2f1 128 sel src 14.0.0.52/24 dst 14.0.0.70/24 proto tcp
offload dev eth4 dir in

18

Other Tidbits

https://libreswan.org/wiki/Benchmarking_and_Performance_testing
● Some benchmarking info on Niantic + IPsec with no offload; also references using

QAT for some encrypt/decrypt offload help but with different encryption than
Niantic IPsec; also has to send data across the PCI bus multiple times

82599 & x540 used in DPDK/Lua implementation for ipsec offload
● suggests 10Gbe line speed possible with engine

https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/CloudNet2016.pdf

19

Questions?

20

http://weclipart.com/screen+bean+people+clipart

	Slide 1
	Title, Subtitle, and Content Layout
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

