
Network Division

Don Skidmore, ND
Josh Hay, ND
Anjali Singhai, ND
Oct 2017

Network Division

• Background of the environment we are operating in.

• Cover some of challenges we ran into and how we addressed them.

• How we are planning on supporting virtualization (SR-IOV) with
IPsec offload.

Agenda

2

Network Division

• No separate control plane for Configuration and Metadata

• All control data has to go threw the MAC to get to the Agent

• Use one L2 tag to denote Configuration packets

• Different L2 tag to insert Metadata into a packet

Connectivity with our IPsec Agent

3

Agent FVL

Network Division

Configuration Packets

4

Controlling entity
FVL driver

FVL

IPsec Agent

Ethernet
Frame

Special
L2 Config tag

Agent specific Config Info

Ethernet
Frame

Special
L2 Config tag

Agent specific Config Info

Network Division

Example Configuration packets

• Add SA

• Remove SA

• Remove all SA’s on a port

5

Network Division

Adding Metadata to a packet

6

Linux driver
Egress: write to L2TAG fields in descriptor

Ingress: read from L2TAG fields in descriptor

Ethernet
Frame

L2 tag 32-bit
metadata

Payload

Ethernet
Frame

Ethernet
Frame

Payload

Payload

+ Descriptor w/ 32-bit metadata

FVL
Egress: insert metadata from descriptor into frame
Ingress: extract metadata from frame to descriptor

Target Agent
Egress: strip metadata from frame

Ingress: add metadata to frame

Ethernet
Frame

Payload

Network Division

• Offload packet bit (Tx)

• Next header field (Tx)

• Possible offsets to fields in the packet for the agent (Tx)

• Error return - i.e. did the decrypt work and if not why (Rx)

• Index to SA used to decrypt (Rx)

Some Metadata fields

7

Network Division

• Implemented all protocols above

• We verified they play nicely with our existing Agent

• Virtualization design is currently ahead of our Agent’s functionality

Where we are at now

8

Network Division

• Multiple SAD domains

• Abandoned SA clean up

• Malicious VMs

• East-West VM traffic

Virtualization Challenges

Network Division

• Agent SAD unaware of all active
SA’s

• Any one PF/VF SAD unaware of
all SA’s being offloaded

Multiple SA domains

Agent SAD Domain

PF SAD Domain

VF 1 SAD Domain

VF 2 SAD Domain

Off loaded SA

Non-Off loaded SA

Network Division

• Following fields make SA unique in a SAD
domain

• Destination IP address

• IPsec Protocol

• SPI

• So using only these fields with multiple SAD
domains false matches could occur

• Could lead to offload agent processing
packets it shouldn’t

Where this can be a problem

Network Division

• Add to the agent SA’s additional fields

• Local MAC address

• VLAN (possible multiple for Q-in-Q)

• Any SA lookup would also verify these
fields as well.

Extending the key as a solution

+ local MAC
+ VLAN tag(s)

Network Division

• What if a VF is removed before it can
clear it’s SA’s from the Agent

• virsh destroy vm

• Panics

• Same is true for a PF as well

• Need a method for clearing out these
SAD entries in the Agent.

• Our IPsec Agent is only capable of
removing induvial SAs or all owned by a
given port.

Abandoned SAs
VF 1 SAD VF 2 SAD

SA 1
SA 2 – offloaded
SA 3

SA 4 - offloaded
SA 5 – offloaded
SA 6

Agent SAD

SA 2
SA 4 - orphaned
SA 5 - orphaned

Network Division

• All SA creations and removals proxy
threw PF driver.

• PF drive maintains DB of SAs and
what SAD domain they are from

• Means the PF has the information
needed to clean out obsolete SAs

• Could encrypt keys if concerns
about PF being able to view in the
clear

Proxy all SA add/removals threw PF

14

VM
SAD

+ SA Add/Remove

PF driver

IPsec Agent

SA
ownership

DB

Agent SAD

Mailbox message

Agent Configuration

Network Division

1. VM1 is destroyed without releasing it’s
SAs.

2. Later that VF is brought up in a new VM. It
request resources from the PF.

3. Thanks to it’s SA to SAD domain mapping
the PF knows all the SA that were active in
that domain. It sends multiple remove SA
messages to the agent.

4. After the agent removes the SA from it’s
SAD it replies to the PF driver which can
then remove it from it’s SAD domain
mapping DB.

5. The PF can now reply to the VF request for
resources.

Example of this in action

15

VM1/VF1

SA1 – offloaded
SA2 - offloaded

VM2/VF1

PF driver

SA1 – VF1
SA2 – VF1

IPsec Offload Agent

1

2

3 4

5

Network Division

• A concern for us since we
don’t have a separate control
plane

• A malicious VF driver could
craft it’s own configuration
packets and add it’s own L2
metadata tag.

• With SR-IOV such traffic by-
passes the PF driver going
directly to the MAC.

Malicious VFs

16

VM - Trusted VM - Untrusted

PF driver

IPsec Offload Agent

VF Malicious VF

Mailbox – Add SA

Config packet,
Add SA

Fake Config packet
Add SA

Network Division

• PF sets up Port L2 tagging on untrusted VF

• VF unaware and unable to modify this setting

• Tag add metadata with offload bit cleared

• All the agent will do with this packet is:

• Strip the metadata header

• Bypass all IPsec offload.

Identifying untrusted traffic in the agent

17

IPsec Offload Agent

PF driver

VF - Untrusted

Port L2 tagging

Configure VSI with L2
port tagging.

Eth

Eth

Malicious config

Malicious configMetadata (off = 0)

Eth Malicious config

Network Division

• The VM doesn’t know if the target for its
traffic is local to the same system.

• If it is local packets routed via the VEB will
NOT go threw the Agent (i.e. no offload
processing)

• Could be solved by using VEPA but not all
ToR switch support it.

East-West VM traffic

18

VMVM

VEB

FVL

Agent

Offload

Network Division

• Place FVL in VEPA mode

• Instead of requiring the first switch to the
hairpin have an agent in the Agent do it

• All Agent offloads act as normal

• All routing is still done in FVL the Hairpin just
turns around local traffic

• The driver will need to tell the Agent what
traffic is local.

Hairpin Agent solution

19

VM VM

FVL

VEPA

Agent

EncryptDecrypt

VEB Hairpin

Network Division 21

IPsec Control Packet flow
Network Stack

xdo_dev_state_add()

FVL Driver

Agent Agent SAD

Create Add_SA
Interpret
Add_SA reply

1

2

3

4

5

6

7

1. Stack calls xdo_dev_state_add to
add an SA.

2. Driver creates an Add_SA control
packet

3. The Add_SA packet is sent to the
Agent

4. The Agent adds the SA to its SAD if
possible.

5. The Agent sends a Add_SA reply to
the driver

6. The driver receives the reply and
interprets it.

7. The return value to
xdo_dev_state_add reflects what we
received in the Add_SA reply

Network Division 22

Simplified Packet Format

Network Division

• Problem: The header is replicated exactly for each segment, but parts of it
need to be changed per segment

• Solution: Update RTL to track Sequence Number/IV to the SA entry in the
SAD and replace these fields in the packet segments on the fly

• Also reduces metadata consumption

If (IVDB[SA].IV <= packet.IV)

IVDB[SA].IV = packet.IV + 1

Else if (packet.IV < IVDB[SA].IV)

packet.IV = IVDB[SA].IV

IVDB[SA].IV++

TSO Sequence Number Solution

