
Status, Open Issues and Extensions for switchdev

SR-IOV mode

• Or Gerlitz, Mellanox

• Simon Horman, Netronome

• Netdev 2.2, Nov 2017, Seoul, Korea

BoF Outline:

• summary of the current upstream support

• SRIOV e-switch use cases with L2 FDB / L3 FIB offloads

• SRIOV e-switch Linux Bridge offload

• SRIOV e-switch Linux Router offload

• Representor netdev naming conventions

• port model for CPU and physical (uplink) ports

• Applicability for switching container networking

summary of the current upstream support

• 4.8 - basic support for the proposed architecture was introduced
• SRIOV switchdev mode (devlink)

• VF rep netdevs and TC/flower e-switch management (mlx5)

• 4.9..4.12 - VLAN, tunnel and header-rewrite actions were face-
lifted/defined/offloaded (so far mlx5 only)
• vlan action offload

• tunnel key action definition and offload

• pedit action face list and offload

• 4.13.. -- nfp driver support was added for most/all the above

• 4.14 -- bnxt driver support was added for some of the above

• 4.15.. -- more drivers coming up?! (liquidio, i40e)

SRIOV e-switch use cases with L2 FDB / L3 FIB offloads

• If the control plane is flow based e.g (OVS, ODL, DVR) we need the HW
driver to support a simple set of flow matches and actions, to be programmed
directly e.g through tc/flower:

FDB: match on mac/vlans, push/pop vlan + fwd

FIB: match on mac/vlans, apply header re-writes (MACs, TTL) + fwd

• For L3, we assumed here a simple use-case 

• For both cases, flow counters HW support is typically needed for
packet/bytes statistics and last-used based aging

SRIOV use cases with L2 / L3 offloads – cont’

• Common NIC HWs don't have the same pipeline building blocks as switch ASIC

Still, we aim to conduct offloading of L2 (FDB) and L3 (FIB) Linux data-paths

• Proposal: adjust the NIC HW driver to register and act on the kernel L2/L3
notifications as done by switch ASIC driver

• Adjust some aspects of the core networking to deal with these type of drivers

• When the HW API is flow based, some translation can be done in the HW
driver from the kernel object (FIB/FDB) to flow

SRIOV e-switch Linux Bridge offload

• create linux bridge (e.g .1q), assign VF and uplink rep netdevices to the bridge

• support the switchdev FDB notifications in the HW driver

• learning:
• respond to SWITCHDEV_FDB_ADD_TO_DEVICE events
• if the HW API doesn't support FDBs, translate to flow: match on mac/vlan --> fwd to port

• aging:
• respond to SWITCHDEV_FDB_DEL_TO_DEVICE events (del FDB from HW)
• enhance the driver/bridge API to allows drivers provide last-use indications on FDB entries

• STP:
• fwd - offload FDBs as explained above
• learning - make sure HW flow miss (slow path) goes to CPU
• discard - add drop HW rule

• flooding:
• use SW based flooding

SRIOV e-switch Linux Router offload

• create linux bridge, assign VF reps netdevices to the bridge, assign IP address to the bridge

• assign IP address to the uplink rep, to be used as router port (the uplink rep is not part of
the bridge)

• support FIB (FIB_EVENT_ADD/DEL) notifications in the HW driver

• under a simple use-case, router HW does two lookups prior to xmit:
• LPM: match on dest IP, resolve the interface and next-hop
• Neigh: based on the dest ip + interface, resolve the next-hop mac

• flow based NIC HW APIs can be used to emulate that
• LPM: do decreasing match on prefixes of offloaded routes: /32../31.../0
• Neigh: based on the LPM matching, resolve dest mac using offloaded table of kernel neighs

• doing this whole data-path in HW can use MD (Meta-Data) to remember previously matched
elements along the pipe-line

• this doesn't cover ECMP, VRF, etc.

Representor netdev naming conventions

• Proposal

 “[RFC] switchdev: clarify ndo_get_phys_port_name formats”

 pA for physical ports

 where A is port name or ID

 pAsB for split physical ports

 where B is sub-port name or ID

 pfC for PF representors

 where C is PCIe PF name or ID

 pfCvfD for VF representors

 where D is PCIe VF name or ID

Port Model for CPU and Physical (Uplink) Ports

• Model 1 (mlx5)

 PF netdevs = represents phys ports

• Model 2 (nfp)

 PF netdev = link between host and NIC

 MAC representor netdevs = e-switch side of phys ports

Applicability for switching container networking
• easy option, reuse: assign containers with VFs netdevs mapped to their

name-space, connect the VF representors netdevs to SW switching, etc

• scalability can be problematic, ##VFs support by NICs is limited, amount
of resources opened by the driver/FW per VF might be way too much for
simple container app

• consider VMDQ to be a set of NIC HW queues opened over the PF netdev
assigned to a container, e.g based on the upstream HW accelerated MACVLAN
(John F. and Co. 2012).

• idea, generalize the VF rep model for VMDQ reps such that slow path works
just the same:
• Xmit on the VMDQ rep --> Recv into VMDQ nic
• Xmit on the VMDQ nic --> Recv into VMDQ rep
• support tc/flower offloads on the VMDQ rep net-device for fast-path offload

