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• XDP software model
• HW hints in XDP programs
• Initial Performance Results
• Metadata layout considerations
• Programming HW hints
• Dynamically requesting hints with eBPF
• Wrap-up/Questions

Agenda
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• XDP programs are continuing to evolve and are becoming more complex

• Each XDP program does packet parsing to:
• Identify the packet type and extract packet header information
• Based on the use-case then the XDP program 
• may monitor incoming traffic on the network
• manipulate packets
• compute hash or xsums for modified packets
• make packet forwarding decisions based on some map lookups

(DROP/PASS/TX/REDIRECT/etc.)

XDP Software Model
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• What can present-day HW do to help
• Accelerate what is being done in XDP programs in terms of packet processing
• Offset some of the CPU cycles used for packet processing

• Keep it consistent with XDP philosophy
• Avoid kernel changes as much as possible
• Keep it HW agnostic as much as possible
• Best effort acceleration
• A frame work that can change with changing needs of packet processing

• Expose the flexibility provided by programmable packet processing pipeline to adapt to 
XDP program needs

• Help design the next generation Hardware to take it a notch up!

Our Goal
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HW Capability
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• How do you dynamically program the Hardware to get the XDP program the right kind of 
packet parsing help?

• How to pass the packet parsing/map lookup hints that the HW provides with every packet 
into the XDP program so that it can benefit from it? 

Two problems to solve
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HW hints flow
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• Internal testing yielded promising results
• Test setup:

Target: Intel Xeon E5-2697v2 (Ivy Bridge)
Kernel: 4.14.0-rc1+ (net-next)
Network device: XXV710, 25GbE NIC, driver version 2.1.14-k
Configuration: Single Rx queue, pinned interrupt
XDP3: Zero packet parsing (best case scenario)
XDP_HINTS: Uses ptype provided by driver, no packet parsing

Performance improvements 
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Performance improvements, cont.
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• Continued testing on newer Xeon systems
• Try to observe any DDIO improvements
• Try minimizing memcpy()’s into XDP buffer headroom
• At least measure impact of memcpy() versus direct DMA
• Test with larger, more complex XDP programs
• Test with encap/decap, encryption, forwarding, etc.

Performance improvements, next steps
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• Approach 1: Common layout independent of underlying HW
• Requires community agreement on common structures
• Would be in the UAPI

• Approach 2: Vendor libraries in eBPF libraries
• Requires XDP/eBPF programs to detect underlying hardware

• Approach 3: Chained XDP programs
• Lightweight “shim” would contain vendor-specific logic
• Tail-call larger program with parsed metadata to run rest of logic

Metadata layouts – what to do?
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Chaining XDP programs
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• Existing hardware flow programming available via tc
• tc flower
• tc u32
• Difficult to match filters programmed via tc and which HW hints to 

use in XDP programs
• Any new match actions and/or fields for tc flower need kernel 

changes to implement
• Defining HW hints to program via eBPF sections can be dynamic 

and not require kernel changes to extend

Programming HW hints
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eBPF hint programming flow
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Type	of	HW	hint Size Description

Packet	Type U16 A	unique	numeric	value	that	identifies	an	ordered	chain	of	headers	that	were	
discovered	by	the	HW	in	a	given	packet.

Header	offset U16 Location	of	the	start	of	a	particular	header	in	a	given	packet.	Example	start	of	
innermost	L3	header.

Extracted	Field	
value

variable Example	Inner	most	IPv6	address

HW Hints
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Match U32 Match	a	packet	on	certain	fields	and	the	values,		provide	a	SW	marker	as	a	hint	if	the	
packet	matches	the	rule

Checksum U32 A	total	packet	Checksum

Packet	Hash U32 Hash	value	calculated	over	specified	fields	and	a	given	key	for	a	given	packet	
type

Ingress	Timestamp U64 Packet	timestamp	as	it	arrives

Parsing Hints

Map Offload

Packet 
Processing Hints
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ELF Special Headers to request HW hints
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struct	bpf_hw_hints_def	SEC("hw	hints")	rx_match	=	{
								.type	=	PACKET_MATCH,
								.fields	=	{PTYPE,	INNER_L3_SRC,	INNER_L4_SRC},
								.mask	=	{	0xff,	0.0.ff.ff,	0xffff},
								.value	=	{	0x10,	10.10.20.2,	65},
								.result	=	25	/*	This	hints	adds	a	match	rule	into	Hw,	which	creates	a	SW	defined	result	when	Hw	
finds	a	match	*/
								.size	=	sizeof(__u32),
									};

struct	bpf_hw_hints_def	SEC("hw	hints")	rx_offset	=	{
								.type	=	PACKET_OFFSET_INNER_L4,
								.size	=	sizeof(__u16),
									};

struct	bpf_hw_hints_def	SEC("hw	hints")	rx_ptype	=	{
								.type	=	PTYPE,
								.size	=	sizeof(__u16),
								};		/*	PTYPE	values	should	be	agreed	upon	between	the	SW	and	
the	HW	providing	the	hints,	the	driver	may	have	to	do	the	translation
between	the	two	*/
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• The ELF sections that carry Hw programming hints need to be passed over to the driver in 
some form so that it can program the HW accordingly.

• Introduce some new helper ndo_offload_xdp_hints() that the driver can call to extract 
what the XDP program can use as hints and program the HW accordingly.

• The driver hides all the HW programming details, the hints format is generic for any HW.
• A given HW may or may not be able to provide all the hints.
• It’s a best effort mechanism to offload what the HW can support.

Programming Flow
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• Performance results using HW hints are promising
• Still need to test on newer hardware
• Still need to test with more complex XDP programs
• Prototyping of eBPF-based HW hint programming needs to be 

completed
• Will provide RFC patches to community to bless direction
• Need feedback from community on how to make ready for merging
• Need agreement on actual metadata layout in xdp_buff headroom
• Need agreement if eBPF-based HW hint programming is right direction

Wrap-up, next steps
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Questions?
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Backup
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• Existing NIC hardware has packet processing capabilities and can provide this data in 
some form to the software.

• SmartNICs and programmable NICs will have capabilities to provide even more packet 
meta data to software

• Why not utilize these hints from the NIC Hardware already available as meta data to the 
NIC SW driver and make it available to XDP?

• Utilizing these hints will help the XDP programs to accelerate packet processing and take 
faster decisions based on the business logic for a given use-case

Using HW hints: motivation 
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