
TTCN-3 and Eclipse TITAN for testing protocol
stacks
Harald Welte <laforge@gnumonks.org>

Protocol Testing
Important for:

conformance to specification

ensuring interoperability

network security

regression testing

performance

Protocol Testing
No standard methodology, language, approach, tool

testing implementation against itself

works only for symmetric protocols

wouldn’t cover lots of problems

testing against wireshark

wireshark often way more tolerant than spec

custom implementation

in Python (e.g. using scapy)

in Erlang (good binary encoder/decoder) or other languages

specific tools like packetdrill

Protocol Testing
Personal story: During past years,

I implemented tons of [telecom] protocols / stacks at Osmocom.org

I was looking for better tools to help [automatic] testing

primarily functional testing (correctness / conformance)

not so much performance testing

I figured Ideal test tool would…

allow very productive and expressive way to describe encoding/decoding

allow very convenient pattern matching on incoming messages

allow exchange of messages asynchronously with implementation under test

I stumbled on TTCN-3 occasionally and investigated

The TTCN-3 Language
domain-specific language just for protocol conformance tests

TTCN history back to 1983 (!), TTCN-3 since 2000

used extensively in classic telecom sector (Ericsson, Nokia, etc.)

ETSI developed and published abstract test suites in TTCN-3 for

IPv6, SIP, DIAMETER, ePassports, Digital Mobiel Radio, 6LoWPAN

Other bodies published test suites for

CoAP, MQTT, MOST, AUTOSAR

But: Until 2015, only proprietary tools / compilers :(

Eclipse TITAN
After TTCN-3 specification in 2000, Ericsson internally develops TTCN-3 toolchain

adopted for many Ericsson-internal testing of all kinds of products

proprietary software with commercial licenses

300,000 lines of Java + 1.6 Million lines of C++

Released as Open Source as "Eclipse TITAN" in 2015

Not just TTCN-3 compiler, but also extensive documentations and many

protocol modules, test ports as well as Eclipse IDE, Log file viewer/visualizer,

etc.

eclipse-titan part of standard Debian / Ubuntu archive, only one apt-get away

Great, we can finally use TTCN-3 in FOSS!

Eclipse TITAN compiler workflow

TITAN actually compiles into executable binaries, it is not using a VM or scripting

ATS: Abstract Test Suite (source code)

ETS: Executable Test Suite (executable code)

TTCN-3 Language Features (with TITAN)
comprehensive type system

parametric templates

variety of encoders/decoders

automatic / comprehensive logging framework

powerful program control statements

built-in notion of tests cases, test suites, verdicts, …

runtime / executor for parallel test components + aggregating results

TTCN-3 Basic Types
Simple basic types such as integer, float, boolen

Basic string types such as bitstring, octetstring, hexstring, charstring

(IA5) and universal charstring (UCS-4).

Structured Types record, set, record of, set of

Verdict type verdicttype

can have either value none, pass, inconc, fail, or error

verdict can only deteriorate (pass → fail) but never improve (error →
pass)

every test case implicitly has a verdict, no need to explicitly declare a variable

of verdicttype

TTCN-3 Structured Types
A structured type is an abstract type comprised of other types, whcih can be nested. An

example for a record type (similar to a C-language struct) is shown below

type record MyMessageType {

 integer field1 optional<1>,

 charstring field2,

 boolean field3

};

1. optional members may be present or not

TTCN-3 Union Type
A union expresses a set of alternative types of which one alternative must be chosen.

type union MyMessageUnion {

 integer field1,

 charstring field2,

};

Difference to C-language union: ischosen() can be used to learn which of the union

members is chosen/defined!

Not-used and omit
until a variable or field of structured type is assigned, it is unbound

whenever a value is expected, TTCN-3 runtime will create an error for unbound

in case of absence of optional fields, explicit omit value must be assigned!

Sub-typing
Sub-typing can be used to further constrain a given type. Typical examples include

constrained number ranges, and string patterns

type integer MyIntRange (1..100);

type integer MyIntRange8 (0..infinity);

type charstring MyCharRange (”k”..”w");

type charstring SideType (”left”, ”right”);

type integer MyIntListRange (1..5,7,9);

type record length(0..10) of integer RecOfInt;

type charstring CrLfTermStrin (pattern ”*\r\n”);

Templates
Matching incoming messages against some kind of specification is one of the most

common tasks in testing protocols

some expected fields are static (message type)

some expected fields are known (source address)

some fields are chosen by sender (some identifier)

some fields we don’t care (optional headers that may or may not be present)

TTCN-3 Templates provide elegant solution for this, avoiding any explicit code to be

written

templates can even be parametric, i.e. they can be instantiated with

"arguments"

templates can also be used for sending messages, if they are fully specified/qualified

Templates

// Value list template

template charstring tr_SingleABorC := (”A”, ”B”, ”C”);

// Value range

template float tr_NearPi := (3.14 .. 3.15);

template integer tr_FitsToOneByte := (0 .. 255);

template integer tr_GreaterThanZero := (1 .. infinity);

// Intermixed value list and range matching

template integer tr_Intermixed := ((0..127), 200, 255);

Matching inside values

// Using any element matching inside a bitstring value

// Last 2 bits can be '0' or '1'

template bitstring tr_AnyBSValue := ’101101??’B;

// Matches charstrings with the first character "a"

// and the last one "z"

template charstring tr_0 := pattern "a*z";

more capabilities using complement, ifpresent, subset, superset,

permutation constructs not covered here

Parametric Templates
See below for an example of a parametric template:

type record MyMessageType {

 integer field1 optional,

 charstring field2,

 boolean field3

};

template MyMessageType trMyTemplte(boolean pl_param) := {

 field1 : = ?, // present, but any value

 field2 : = (”B”, ”O”, ”Q”) ,

 field3 := pl_param

};

The built-in match() function can be used to check if a given value matches a given

template. Some TTCN-3 statements such as receive() have built-in capabilities for

template matching, avoiding even the explicit call of match() in many cases.

Template Hierarchy
Using modified templates, one can build a hierarchy of templates: From the specific to the

unspecific

template MyMsgType t_MyMsgAny := {

 msg_type := ?,

 foo := bar

};

template MyMsgType t_MyMsg23 modifies t_MyMsgAny := {

 msg_type := 23,

};

where

t_MyMsgAny matches a message with any message type and "foo=bar", while

t_MMyMsg23 matches only those that have "foo=bar" and "msg_type=23"

Encoders/Decoders
type system, templates, matching are all nice and great, but we need to get data from

wire format into TTCN-3 abstract types

TTTCN-3 specifies importing of formal schema definitios, such as ASN.1, IDL, XSD

(XML) and JSON

TITAN has additional codecs for those (many) protocols that lack formal syntax

raw codec for binary protocols (e.g. GTP)

text codec for text based protocols (e.g. HTTP, MGCP, IMAP, …)

codecs allow you to express/describe the format (declarative programming) rather

than the usual imperative approach

TITAN raw codec: UDP Example
How to express an UDP header using TITAN raw codec

type integer LIN2_BO_LAST (0..65535) with {

 variant ”FIELDLENGTH(16), COMP(nosign), BYTEORDER(last)”

};

type record UDP_header {

 LIN2_BO_LAST srcport,

 LIN2_BO_LAST dstport,

 LIN2_BO_LAST len,

 LIN2_BO_LAST cksum

} with { variant ”FIELDORDER(msb)” };

type record UDP packet {

 UDP_header header

 octetstring payload

} with {

 variant (header) ”LENGTHTO(header, payload), LENGTHINDEX(len)”

};

TITAN raw codec: GTP Example
How to express an GTP header using TITAN raw codec

type record GRE_Header {

 BIT1 csum_present,

 BIT1 rt_present,

 BIT1 key_present,

 ...

 OCT2 protocol_type,

 OCT2 checksum optional,

 OCT2 offset optional,

 OCT4 key otional,

 ...

} with {

 variant (checksum) "PRESENCE(csum_present='1', rt_present='1'B)"

 variant (offset) "PRESENCE(csum_present='1'B, rt_present='1'B)"

 variant (key) "PRESENCE(key_present='1'B)"

}

TITAN text codec: MGCP Example

type charstring MgcpVerb ("EPCF", "CRCX", "MDCX", "DLCX", "RQNT",

"NTFY",

 "AUEP", "AUCX", "RSIP") with {

 variant "TEXT_CODING(,convert=upper_case,,case_insensitive)"

};

type charstring MgcpTransId (pattern "\d#(1,9)");

type charstring MgcpEndpoint (pattern "*@*");

type charstring MgcpVersion (pattern "\d.\d") with {

 variant "BEGIN('MGCP ')"

};

type record MgcpCommandLine {

 MgcpVerb verb,

 MgcpTransId trans_id,

 MgcpEndpoint ep,

 MgcpVersion ver

} with {

 variant "SEPARATOR(' ', '[\t]+')"

 variant "END('\r\n', '([\r\n])|(\r\n)')"

};

Program Control Statements
if / else like in C

select statement similar to C switch

for, while, do-while loops like in C

goto and label

break and continue like in C

Abstract Communications Operations
TTCN-3 test suites communicate with implementation under test through abstract

TestPorts

TestPorts can be implemented in TTCN-3 or C++ and linked in

TestPorts must be connected before using send/receive operaitons

TITAN provides TestPorts for e.g. packet socket, IP/UDP/TCP/SCTP socket,

…

<port>.send(<ValueRef>) performs non-blocking send

Literal value, constant, variable, specific value template, …

<port>.receive(<TemplateRef>) or <port>.receive performs blocking

receive

literal value, constant, variable, template (with matching!), inline template

'… but if receive blocks, how can we wait for any of N events?

Program Control and Behavior
program statements are executed in order

blocking statements block the execution of the component

occurrence of unexpected event may cause infinite blocking

// x must be the first on queue P, y the second

P.receive(x); // Blocks until x appears on top of queue P

P.receive(y); // Blocks until y appears on top of queue P

// When y arrives first then P.receive(x) blocks -> error

This is what leads to the alt statement: alt declares a seto alternatives covering all events,

which

can happen: expected messages, timeouts, …

must not happen: unexpected faulty messages, no message received, …

all alternatives inside alt are blocking operations

The alt statement

P.send(req)

T.start;

// ...

alt {

[] P.receive(resp) { /* actions to do and exit alt */ }

[] any port.receive { /* handle unexpected event */ }

[] T.timeout { /* handle timer expiry and exit */ }

}

[] is guard condition enables or disables the alternative

usually empty [] equals [true]

can contain a condition like [x > 0]

very good for e.g. state machines to activate some alternatives only in certain

states while others may occur in any state

The alt and repeat statements
The repeat statement

takes a new snapshot and re-evaluates the alt statement

can appear as last statement in statement blocks of statements

P.send(req)

T.start;

alt {

 [] P.receive(resp) { /* actions to do and exit alt */ }

 [] P.receive(keep_alive) { /* handle keep alive message */

 repeat }

 [] any port.receive { /* handle unexpected event */ }

 [] T.timeout { /* handle timer expiry and exit */ }

}

TTCN-3 modules
TTCN-3 code is written in modules

a test suite consists of one or more modules

a module contains module definitions and an optional control part

parameters (automatically configurable via config file)

definition of data types, constants, templates

definition of communications ports

definition of test components, functions altstesp and test cases

control part determines default order/execution of test cases

modules can import from each other (think in python terms)

Examples
Let’s have a look at some real-world examples and do a bit of a walk-through before

continuing with the slides…

Logging
TITAN runtime contains extensive logging framework

config file determines log level for various different subsystems

e.g. any encode, decode, receive, transmit operations logged

timer starts, expirations

any changes to test case verdict

explicit logging from code by use of log() built-in function

ttcn3_logformat tool for pretty-printing log files

ttcn3_logmerge tool for merging/splicing multiple logs

log plugins e.g. for generating JUnit-XML available

facilitates easy reporting / integration to Jenkins or other CI

Logging
Log file format example:

// abstract data type before encode

13:30:41.243536 Sent on GTPC to system

@GTP_CodecPort.Gtp1cUnitdata : { peer := { connId := 1, remName :=

"127.0.23.1", remPort := 2123 }, gtpc := { pn_bit := '0'B, s_bit

:= '1'B, e_bit := '0'B, spare := '0'B, pt := '1'B, version :=

'001'B, messageType := '01'O, lengthf := 0, teid := '00000000'O,

opt_part := { sequenceNumber := '3AAC'O, npduNumber := '00'O,

nextExtHeader := '00'O, gTPC_extensionHeader_List := omit },

gtpc_pdu := { echoRequest := { private_extension_gtpc := omit } }

} }

// 'msg' contains encoded binary data actually sent via socket

13:30:41.243799 Outgoing message was mapped to

@IPL4asp_Types.ASP_SendTo : { connId := 1, remName :=

"127.0.23.1", remPort := 2123, proto := { udp := { } }, msg :=

'32010004000000003AAC0000'O }

Logging
The same log file lines if run through ttcn3_logformat

13:30:41.243536 Sent on GTPC to system

@GTP_CodecPort.Gtp1cUnitdata : {

 peer := {

 connId := 1,

 remName := "127.0.23.1",

 remPort := 2123

 },

 gtpc := {

 pn_bit := '0'B,

 s_bit := '1'B,

 e_bit := '0'B,

 spare := '0'B,

 pt := '1'B,

 version := '001'B,

 messageType := '01'O,

 lengthf := 0,

 teid := '00000000'O,

 opt_part := {

 sequenceNumber := '3AAC'O,

 npduNumber := '00'O,

 nextExtHeader := '00'O,

 gTPC_extensionHeader_List := omit

 },

 gtpc_pdu := {

 echoRequest := {

 private_extension_gtpc := omit

 }

 }

 }

}

13:30:41.243799 Outgoing message was mapped to

@IPL4asp_Types.ASP_SendTo : {

 connId := 1,

 remName := "127.0.23.1",

 remPort := 2123,

 proto := {

 udp := { }

 },

 msg := '32010004000000003AAC0000'O

}

Existing TITAN Source
Protocol encoding/decoding

BSSAP+, BSSGP, BSSMAP, CoAP, DSS1, DUA, EAP, GRE, GTP, HTTP, ISUP,

LLC, M2PA, M2UA, MQTT, MongoDB, NDP, NS, NTAF, ROSE, SCTP, SDP,

SNDCP, STOMP, STUN, SUA, TLS, WTP, DNS, IP, SMPP, SNMP, IKEv2,

DHCP, PPP, RTP, TCP, UDP, XMPP, DHCPv6, SMTP, ICMP, RTSP, ICMPv6,

DIAMETER, FrameRelay, ProtoBuff, IUA, L2TP, M3UA, MIME, WebSocket,

H.248, IMAP, IPsec, SRTP, MSRP, ICAP, RADIUS

Protocol Emulation

M3UA, SCCP, SUA

Test Ports

GPIO, MTP3, Serial, SocketCAN, SCTP, SIP, HTTP, Telnet, UDP, pcap file,

pipe, SQL, TCP, SUNRPC, SSH, STDINOUT, sockets, LDAP

Further Reading
Ericsson TTCN-3 tutorial http://www.ttcn-3.org/files/TTCN3_P.pdf

An Introduction to TTCN-3, 2nd Edition http://www.wiley.com/go/willcock_TTCN-

3_2e

Modules https://github.com/eclipse

More Modules http://git.eclipse.org/

Debian https://packages.debian.org/search?keywords=eclipse-titan

Ubuntu https://packages.ubuntu.com/search?keywords=eclipse-titan

http://www.ttcn-3.org/files/TTCN3_P.pdf
http://www.wiley.com/go/willcock_TTCN-3_2e
https://github.com/eclipse
http://git.eclipse.org/
https://packages.debian.org/search?keywords=eclipse-titan
https://packages.ubuntu.com/search?keywords=eclipse-titan

EOF
End of File

