XDP ACCELERATION USING HW-BASED HINTS

PJ Waskiewicz, Anjali Singhai Jain
Networking Division
Nov 2017

Network Division

Agenda

XDP software model
* HW hints in XDP programs
* Initial Performance Results
* Metadata layout considerations
* Programming HW hints
* Dynamically requesting hints with eBPF

* Wrap-up/Questions

XDP Software Model

* XDP programs are continuing to evolve and are becoming more complex

« Each XDP program does packet parsing to:
* Identify the packet type and extract packet header information

* Based on the use-case then the XDP program
* may monitor incoming traffic on the network
* manipulate packets
« compute hash or xsums for modified packets
 make packet forwarding decisions based on some map lookups
(DROP/PASS/TX/REDIRECT/etc.)

Our Goal

* What can present-day HW do to help
* Accelerate what is being done in XDP programs in terms of packet processing
+ Offset some of the CPU cycles used for packet processing
* Keep it consistent with XDP philosophy
* Avoid kernel changes as much as possible
* Keep it HW agnostic as much as possible
* Best effort acceleration
* A frame work that can change with changing needs of packet processing

* Expose the flexibility provided by programmable packet processing pipeline to adapt to
XDP program needs

* Help design the next generation Hardware to take it a notch up!

Network Division

HW Capability

XDP packet Buffer
Driver and XDP hooks

Meta data

compute

HW pipeline

Extract

|dentify

Packet

Two problems to solve

* How do you dynamically program the Hardware to get the XDP program the right kind of
packet parsing help?

* How to pass the packet parsing/map lookup hints that the HW provides with every packet
into the XDP program so that it can benefit from it?

HW hints flow

% >
R s 4)
& & &7
% ; Packet data
© XDP
T I
program
Packet Meta Data \ /

from NIC HW to XDP
SwW

Performance improvements

* Internal testing yielded promising results
 Test setup:

Target: Intel Xeon E5-2697v2 (lvy Bridge)

Kernel: 4.14.0-rc1+ (net-next)

Network device: XXV710, 25GbE NIC, driver version 2.1.14-k
Configuration: Single Rx queue, pinned interrupt

XDP3: Zero packet parsing (best case scenario)

XDP_HINTS: Uses ptype provided by driver, no packet parsing

Performance improvements, cont.

25000000

20000000
15000000
10000000
5000000 .

packets s

m XDP1 (1Q, no JIT) m XDP3 (1Q, no JIT) m XDP_HINTS (1Q, no JIT)
XDP1(1Q, JIT) m XDP3 (1Q, JIT) B XDP_HINTS(1Q, JIT)

o

Performance improvements, next steps

* Continued testing on newer Xeon systems
* Tryto observe any DDIO improvements
e Try minimizing memcpy()'s into XDP buffer headroom
« At least measure impact of memcpy() versus direct DMA
» Test with larger, more complex XDP programs
« Test with encap/decap, encryption, forwarding, etc.

Metadata layouts — what to do?

* Approach 1: Common layout independent of underlying HW
e Requires community agreement on common structures
* Would be in the UAPI

* Approach 2: Vendor libraries in eBPF libraries
« Requires XDP/eBPF programs to detect underlying hardware

* Approach 3: Chained XDP programs
« Lightweight “shim” would contain vendor-specific logic
« Tail-call larger program with parsed metadata to run rest of logic

Chaining XDP programs

Network Division

Driver
(<] [}]
> b=} >3
(<] [} <]
> >3 3
o o o
> > >
04 04 04
'~ -
ShimXDP) Shim XDP
bpf 1 bpf 8
Jump Table Lg, Jump Table Lf:i
bpf 7 bpf 9
|

Business-logic
XDP program

Programming HW hints

« Existing hardware flow programming available via tc
« tcflower
 tcu32
« Difficult to match filters programmed via tc and which HW hints to
use in XDP programs
* Any new match actions and/or fields for tc flower need kernel
changes to implement

* Defining HW hints to program via eBPF sections can be dynamic
and not require kernel changes to extend

eBPF hint programmlng flow
/ /

ﬁ)—.‘m @3 e

eBPF hints
headerin ELF
file

HW Hints

Type of HW hint | Size Description

Parsing Hints

Packet Type uile A unique numeric value that identifies an ordered chain of headers that were
discovered by the HW in a given packet.

Header offset ule6 Location of the start of a particular header in a given packet. Example start of
innermost L3 header.

Extracted Field variable | Example Inner most IPv6 address
value

M Offload u32 Match a packet on certain fields and the values, provide a SW marker as a hint if the
ap 0a packet matches the rule

Packet

Checksum u32 A total packet Checksum Processing Hints

Packet Hash u32 Hash value calculated over specified fields and a given key for a given packet
type

Ingress Timestamp | U64 Packet timestamp as it arrives

Network Division intel ‘ 15

ELF Special Headers to request HW hints

struct bpf_hw_hints_def SEC("hw hints") rx_ptype ={

.type = PTYPE,

.size =sizeof(__u16),

}; /* PTYPE values should be agreed upon between the SWand
the HW providing the hints, the driver may have to do the translation
betweenthe two */

Network Division

Programming Flow

* The ELF sections that carry Hw programming hints need to be passed over to the driver in
some form so that it can program the HW accordingly.

* Introduce some new helper ndo_offload xdp_hints() that the driver can call to extract
what the XDP program can use as hints and program the HW accordingly.

* Thedriver hides all the HW programming details, the hints format is generic for any HW.
* A given HW may or may not be able to provide all the hints.

* It's a best effort mechanism to offload what the HW can support.

Wrap-up, next steps

* Performance results using HW hints are promising
« Still need to test on newer hardware
« Still need to test with more complex XDP programs

* Prototyping of eBPF-based HW hint programming needs to be
completed

* Will provide RFC patches to community to bless direction

* Need feedback from community on how to make ready for merging
* Need agreement on actual metadata layout in xdp_buff headroom
* Need agreement if eBPF-based HW hint programming is right direction

Questions?

Backup

@ | =

Using HW hints: motivation

« Existing NIC hardware has packet processing capabilities and can provide this data in
some form to the software.

* SmartNICs and programmable NICs will have capabilities to provide even more packet
meta data to software

* Why not utilize these hints from the NIC Hardware already available as meta data to the
NIC SW driver and make it available to XDP?

« Utilizing these hints will help the XDP programs to accelerate packet processing and take
faster decisions based on the business logic for a given use-case

