Performance Improvements of
Virtual Machine Networking

Jason Wang
jasowang@redhat.com

Typical setup

Guest o
virtio-net drv
HOST N /
vhost net
bridge TAP
NIC

Guest

virtio-net drv

HOST

Y /

vhost net

macvlan

macvtap

NIC

How slow were we?

12E

BLvx L5 +viost net
HEspmd +vhost_vser

1.13

Agenda

. Vhost threading model

. Busy polling

. TAP improvements

. Batching virtio processing

. XDP

. Performance Evaluation

. TODO

Threading model

. one kthread worker

for both RX and TX
. half duplex
. degradation on heavy

bi-directional traffic

- more devices since
we are virt

- Complexity for both
management and
application

. Scale?

RX

X

X

RX

Vhost_net
kthread

New models

. ELVIS by Abel Gordon

- Dedicated cores for vhost

- Several devices shares a single vhost worker
thread

- Polling and optimization on interrupt

- Dedicated I/O scheduler
- Lack of cgroup support

. CMWQ by Bandan Das
- All benefits from CWMQ, e.g NUMA, dynamic
workers

- can be cgroup aware but expensive

Busy Polling

Event Driven Vhost

. vhost _net is driven by events:
- virtqueue kicks: tx and rx
- socket events: new packets arrived and sndbuf

availab

. overhea
- caused

geeoding/emul

thread
- caused

vhost_net
thread

le

ds

by V|rtuallzat|on vmentry and vmexit,
guest

ler I'é(f'éncy

“handle_tx handle_rx ‘handle_tx
T ——— vhost

softirq cpu

hardirq/

Limited busy polling (since 4.6)

. still driven by events but busy poll for a while if

nothing to do

- maximum us spent on busy polling is limited by
userspace

- disable events and poll the sources

. overheads of virtualization arq@lnfwakeups was

guest

Taalis dn-the-hact caca oo :
eliffyhated it best case:

kvm
vhost_net | handle_tx handle_rx handle_tx
thread) BN BN vhost
polling polling polling

softirq cpu
hardirq/ No wakeup

Limited busy polling (since 4.6)

. Exit the busy polling loop also when

- signal is pending

- TIF._ NEED RESCHED was set

. 1 byte TCP_RR shows 5%-20% improvements

. Issues

- Not a 100% busy polling implementation
. This could be done by specifying a very large poll-us
. still some limitation caused by sharing kthread model

. Sometime user want a balance between latency
and cpu consumption

TAP improvements

socket recelve queue

. TAP use double linked list (sk_receive queue)

before 4.8

- cache threshing
. Every user has to write to lots of places
. Every change has to be made multiple places

- Spinlock is used for synchronization between
static inbﬁ)\@[glgepkgd@prgﬁ@tpuﬁ *newsk,

struct sk_buff *prev, struct sk_buff *next,
struct sk_buff _head *list)

newsk->next = next;

newsk->prev = prev;

next->prev = prev->next = newsk;
list->qlen++;

ptr_ring (since 4.8)

. cache friendly ring for pointers (Michael S.

Tsirkin)
- an array of pointers
. NULL means valid, INULL means invalid

. consumer and producer verify against NULL, no need to
read the index of each other, no barrier needed

struct ptr_ripgh{jock contention between producer and consumer

int producer cacheline_aligned in_smp;

spinlock_t producer_lock; } producer only
int consumer cacheline _aligned _in_smp;
spinlock_t consumer_lock; } consumer only

[* Shared consumer/producer data */

/* Read-only by both the producer and the consumer */

int size cacheline_aligned_in_smp; /* max entries in queue */
void **queue;

skb array (since 4.8)

. wrapper for storing pointers to skb

. SK_receive_gueue was replaced by skb_array
. 15.3% RX pps was measured in guest during
unit-test

Issue of slow consumer

. If consumer index advances one by one
- producer and consumer are in the same cache line
- cache line bouncing almost for each pointer

. Solution
- batch zergingifédnsuming)

consumer index

cache line

PTR| PT TR| PTR PTR|PTR|PTR|PTR | PTR
Z 0 1 2 | - 7 8 9 0 X

producer index
producer index’

Batch zeroing (since 4.12)

struct ptr_ring {

int consumer_head cacheline_aligned_in_smp; /* next valid entry */
int consumer _tail; /* next entry to invalidate */

int batch:; /* number of entries to consume in a batch */
void **queue;
consumer _tail

consumer_head

PTR

cache line cach_g-!li!fe]e |
PTR | PTR| PTR PTR | PTR | PTR L{ PTR
0 1 2 7 8 9 NLII E
C

producer index

__

zeroing order

Batch zeroing (since 4.12)

Start to invalidate consumed pointers only when
consumer is 2x size of cache line far from
producer

Zeroing in the reverse order
- Make sure producer won’t make progregqsumer tail

umer_head

Make sure producing several new, poi t\ers does
cache line _ cachk€ line

N LT L ne L NUL | PTR
7 L L L | - L L L | - L E |

__

zeroing order

producer index

Batch dequeuing (since 4.13)

consumer the pointers in a batch, pointer
access is lock free afterwards
reduce the cache misses and keep consumer

EveNn MOr€orrprR[PTR[PTR|PTR|PTR PTR
Co_opreat 0 1 2 3 4 3 . 63
consumer _tail /@ ST_RX_BAF _%Efmsrmer_head
PTR | NUL | NUL | NUL | NUL | NUL | NUL 6{‘ PTR
z | L | L|L|L|L|L Wy | E
o — L.
_ zeroing zeroing
producer index round1 round N

Batching for Virtio

Virtqueue and cache misses

18! miss: read avail_idx 5" miss: update used_idx
flag avail idx flag used_idx
N address | len |flag n?x M
1
| 0x8000420 | 0x8 | R NIL
N 2 L 0 0 | W 2 |
3"|miss: read descriptor
2" miss: read idx from avail ring 4" missl: write idx and len at
used rirljg

5 misses for each packet

How batching helps

18! miss: read avail_idx 5" miss: update used_idx
flagl avail_idx flag used_idx
N address | len |flag n?x M

3 miss: read des¢riptofs
2" miss: read indexes

from avail ring _--- | 0x8000420 | Ox8 | R |
2 | 0 0 W | 2 Ox4
0x8000430 0
3 0 3
4 4
5 5
N

M | 4" njiss: \qrite indexes and le
5 misses for 4 packets at used ring
1.25 misses per packet in ideal case

Batching (WIP)

. Reduce cache misses

. Reduce cache threshing
- When ring in almost empty or full
- Device or driver won't make progress when avail idx

or used idx changes
. Cache line contention on avail, used and descriptor ring
was mitigated

. Fast string copy function
- Benefit from modern CPU

Batching in vhost net (WIP)

. Prototype:

- Batch reading avail indexes

- Batch update them in used ring

- Update used idx once for a batch

X get ~22% improvements
. RX get ~60% improvements

. TODO:

- Batch descriptor table reading

XDP

Introduction to XDP

. short for eXpress Data Path

. work at early stage on driver rx
- before skb is created

. Fast

- page level

- driver specific optimizations (page recycling ...)
. Programmable

- eBPF

. Actions
- DROP, TX, FlASSrRI%DIRECT

Typical XDP implementation

. Typical Ethernet XDP support

- Dedicated TX queue for lockless XDP_TX

. per CPU or paired with RX queue

. Multiqueue support is needed
- Adding/removing queues when XDP is set/unset

- Run under NAPI poll routine
. after DMA is done
- Don’t support large packets
. JUMBO/LRO/RSC needs to be disabled during XDP set

. But TAP is a little bit different

XDP for TAP (since 4.13)

Challenge for TAP

- Multiqueue is controlled by userspace:

. solution: No dedicated TX queue, sharing TX queue
. work even for single queue TAP

- Changing LRO/RSC/Jumbo configuration:
. solution: Hybird mode XDP implementation

- Datacopy was done with skb allocation:

. solution: Decouple data copy out of skb allocation,
build_skb()

- No NAPI by default:

run inside tun_sendmsg()

- Zerocopy:
. done through Generic XDP, adjust_head

Hybrid XDP in TAP (since 4.13)

. Merged in 4.13
- mix using native XDP and skb XDP
- simplify the VM configuration (no notice from guest)

tun_recvmsg

0
i
TX skb array

tun_net_xmit
()
W

Zerocopy or small
big packets packet \ N
tun_sendmsg()
Native XDP \\
- XDP_DROP
build_skb()
XDP_TX | _ XDP__ REDIRECT
Generic | | XDP_PAS
XDP S
helpers o-start_xmitt- o2
] nao_sra\rt_xmlt(ndo_xdp_xmit()

XDP transmission for TAP (WIP)

. For accelerating guest RX
- An XDP queue (ptr_ring) is introduced for each tap
socket

- Storing XDP metadata in/™ 55t net 0OM
tun_recvmsg

- Batch¢ -,

_ l\—'

TX sk — .

skb array e XoP XDP data
ptrring -

T T et XDP data
tun_net_ xmit 7 tun_xXdp_xmit

() ()
W ¥/

XDP_REDIRECT

4l \/ [TWAN
EthAPpoIi()

Native XDP

XDP for virtio-net (since 4.10)

. Multiqueue based

- Per CPU TX XDP queue

- Need reserve enough queue pairs during VM
launching

. OFFLOADS were disabled on set on demand
. NO reset

- Copy the packet if headroom is not enough
. Alittle bit slow but should be rare

. Support XDP redirecting/transmission
- Since 4.13

. No page recycling yet

Performance Evaluation

Test setup bridge

. Two Intel(R) Xeon(R)
CPU E5-2630 v3 @
2.40GHz

. Back to back ixgbes

. Testpmd is used:
- traffic generator and

receiver
. 30% faster than
pktgen
- No interrupt
- Busy polling

. Ixand rx was

measured separately

Guest
testpmd
N /
Host kernel vhost_net
bridge TAP
ixgbe
testpmd Remote host
txonly/
rxonly

txonly/
rxonly

RX performance

(WIP

build_skb() g
L for J '
|xgb g

RPS has |
M FRX Mpps
on de I

LK

X performance

WI

15
WIP
1
WTX Mpps
1.5
bus oII|n
1 ¥
[l

XDP vs testpmd

Guest Guest
testpmd testpmd
N / N /
Host kernel Host
vhost_net Us(Vhost pmd
TAP testpmd
XDP_REDIREC (io)
T
ixgbe ixgbe pmd

testpmd Remote host testpmd Remote host

Here we are

13

12

T Mpps

i

RX Mpps=

12E

ElLhv L5
ILinnx LAd+XDF+
Btspmd +vhost_vser

perf — ksoftirgd RX

26.49% [kernel] K] _raw_spin_lock
16.00% [ixgbe K] ixgbe clean rx_irq
15.99% [kernel] k] sock def readable

5.63% [kernel] [K]
dev_get by index_ rcu
5.48% [kernel] [K] bpf tx xdp
4.42% [tun] [K] tun_xdp_ xmit
4.29% [kernel] [K] xdp_do_redirect
3.70% [ixgbe] [K]
ixgbe alloc _rx_buffers
2.53% [kernel] [K] swiotlb_sync_single

2.08% [kernel] [K]

perf — vhost net RX

43.38% [vhost net] [k] handle rx
9.86% [kernel] [k] copy page to iter
8.87% [kernel] [k] copy to iter
7.41% [vhost net] [k] vhost net buf peek
6.38% [vhost k] vhost get vgq desc
6.22% [kernel] [k]iov_iter advance
6.16% [kernel] [k
copy_user_generic_unrolled
3.80% [vhost k] vhost_get_vq desc
3.64% [vhost k] translate desc
2.40% [kernel] [k] copyout

21.49%
13.41%
10.12%

. 6.54%
4.32%
4.15%

tun]

'Vhost]

'Vhost]

vhost _get vq desc
kernel]
kernel]
kernel]

perf — vhost net TX

[k] translate desc
[k] tun_get_user

[K]
K
K
%

lov_iter _advance
copy_page from_iter

copy_user_enhénced_féét_string

3.92% [ixgbe]

[K]

IXxgbe xmit xdp ring.isra.88

3.56% [vhost net]

3.46% [tun]

[k] handle tx
[K] tun sendmsqg

TODO/Raw ideas

. Raw ideas
- better integration with NAPI busy polling in
vhost net?
- pure busy polling vhost_net?
- Better XDP co-operation on page recycling for
hardware NIC drivers?
- Build and receive skb/XDP in vhost net?

- RXx zerocopy
. ndo_post_rx_buffer()?

. Please comment on virtio 1.1

Thanks

