
1

Nov, 2017

Andy Roulin, Shrijeet Mukherjee, David Ahern, Roopa Prabhu | Cumulus Networks

Netdev 2.2 Seoul, Koreal

Resource Management in Offloaded
Switches

2

Linux Kernel

Some taxonomy

Cumulus Netw orks Confidential

Generic Table

Per Packet Lookup Result of Lookup

User Space

Control Plane
Daemon

Update Kernel

Driver

Update Hardware

3

Linux Kernel

Steps which can fail

Cumulus Netw orks Confidential

Updates from Control Plane to the
Kernel

▪ Typically synchronous (netlink)

▪ Batching can cause effects

▪ Userspace handles it today

Updates from Kernel to hardware

▪ Capacity mismatches

▪ Rate mismatches

▪ Type mismatches
Generic Table

Per Packet Lookup Result of Lookup

User Space

Control Plane
Daemon

Update Kernel

Driver

Update Hardware

4

Linux Kernel

Types of Failures

Cumulus Netw orks Confidential

1. Silent Failure

▪ Kernel Table updated, Hardware
table unchanged

▪ Control plane oblivious

2. Advertised Failures

▪ Failure propogates from Hardware

to Kernel to Control plane

▪ Control Plane needs special

handling of asynchronous Failures

Synchronous Failure model not
considered, covered later

Hardware Table

Per Packet Lookup Result of Lookup

User Space

Control Plane
Daemon

Update Kernel

Driver

Update Hardware

5

An actual example – 4 routers linked by BGP

NEED PTR TO GITHUB

r1, r2 and r3 are routers

DUT connects them to each other

r3 is DUT’s default route

▪ 13.0.0.0/24 advertised from r2

▪ Host 13.0.0.1 lives behind r2

Traffic from r1 is being sent towards
r2 since

▪ DUT has learnt about 13.0.0.0/24
from r2

▪ DUT has advertised a path to
13.0.0.0/24 to r1

6

The Havoc the mis-programming creates

NEED PTR TO GITHUB

Now consider

▪ DUT accepted the route
advertisement from r2

▪ DUT routing suite informed r1 of

path to r2

HW however ran out of resources
and failed the table update

▪ r1 has told all it’s neighbors to send
13.0.0.0/24 traffic towards it as it

can reach DUT

▪ DUT blackholes silently

▪ Happiness and Joy is felt all around

7

So how bad can the problem be

*This is not w hat all sw itching silicon implements, but most model functional blocks show n here

What needs to be offloaded in this model*

ACL Tables : Ingress and Egress

Mac Tables : L2 bridging data, vlans, vni’s

Neighbor Table : directly connected hosts

LPM : Longest prefix match data for routing lookups

Data Center, high scale devices typically use logical tcams which are flexible and have dynamic behavior

Low scale home devices typically use real tcams and sram and have relatively predictable behavior

8

State of resource mgmt

ACL Tables

▪ netfilter offload has no clean structured path

▪ Implemented via ndo_setup_tc, which fails silently

▪ For switches this means
Punt all packets to CPU (impractical)

Only control plane packets have ACL in place (security hole)

Mac Tables

▪ Failure to install/fit an FDB entry will result in flooding
While sub-optimal typically functionality is not completely lost

In a large network, this is an unacceptable solution

Cumulus Netw orks Confidential

9

State of resource mgmt (contd)

Neighbor Table
▪ Typically not subjected to oversubscription

Bounded by total interface count in the system

L3 Configuration
▪ Configuration notifiers needs resources e.g. VRF creation, VxLAN

device creation
▪ FIB add/delete notifiers need resources but are filled

asynchronously
▪ Currently all Failures are silent

Fallback to software not practical for data center class devices

Failure results in network wide and hard to pin issues

Cumulus Netw orks Confidential

10

Tables, Tables everywhere, how do we protect them all

This problem is not restricted to switching hardware

▪ Nics are exposed too

What is needed is

▪ Consistent offload failure error path to the user or protocol daemon;

▪ Signaling from kernel to userspace of resource utilization and
capacity

▪ A resource manager model or resource management algorithm for
drivers.
Break things into user selectable profiles

Allow shared memory to be used efficiently

More flexibility than the strict partitioning

Cumulus Netw orks Confidential

11

Simple solutions

Driver profiles

▪ Dedicated resources can be accounted for easily
Anything that is in a fixed table, TCAM implementations

▪ Try/Abort for complex resource allocations
Complex calculations (e.g. ipv4 versus Ipv6/64 versus ipv6/128)

Algorithm based TCAM implementations can fail at less than capacity

Userspace protocol engines maybe able to recover over time

Cumulus Netw orks Confidential

12

The experiment test bench

3 loops that matter

1. ip route add and it’s return
Standard mechanism here

2. The kernel using notifiers to the driver
We added return value significance here

3. The vendor driver updating the real

hardware
Simulated H/W query as a usleep

Put in synchronous check of query result in fib notifier

path

Optionally : async workqueue emulating calling H/W

query and refilling the resources available

Actual code changes are here :

13

Various models explored in this paper

Lockstep

▪ Explicit capacity check

▪ Simple and naïve implementation

▪ All loops are executed in series

Synchronous prefetch

▪ Capacity within skid and hides latency

▪ Above solution + prefetch of a batch of

resources

▪ Latency amortized over batch size

Actual code changes are here :

14

Various models explored in this paper

Credit based prefetch

▪ Hides latency, checks capacity and rate

▪ Asynchronous update of availability

▪ Matches capacity and rate

▪ Needs atomic add from async thread

Actual code changes are here :

15

One solution that works everywhere .. ish

Remember each trip to hardw are takes 50ish usecs, w hich is 500ms unless they are batched

Method Users

Latency

HW

Latency

Query

Latency

Data

Outage

Lock Step 600ms 60us 35us 1.10s

Credit based 480ms 60us 35us 0.81s

Lock Step 600ms 60us 350us 3.98s

Credit based 480ms 60us 350us 0.84s

Measurements for 10000 routes being updated from FRR to hardware

16

One solution that works everywhere .. ish

Remember each trip to hardw are takes 50ish usecs, w hich is 500ms unless they are batched

Method Users

Latency

HW

Latency

Query

Latency

Data

Outage

Lock Step 600ms 60us 35us 1.10s

Credit based 480ms 60us 35us 0.81s

Lock Step 600ms 60us 350us 3.98s

Credit based 480ms 60us 350us 0.84s

Measurements for 10000 routes being updated from FRR to hardwareThis is really 55us * 10000

and some batching help
Increased H/W latency has

no implication

17

Conclusions

Resource management is non-negotiable for user experience

A credit queue based scheme will work well

▪ It also hides h/w and transaction latency well

▪ Fits in with minimal changes into our current system

▪ Should have no foot print in pure s/w path

▪ If same principle was applied to the write path
The total transaction latency can be reduced dramatically

Cumulus Netw orks Confidential

18

Thank you!
Visit us at cumulusnetworks.com or follow us @cumulusnetworks

© 2017 Cumulus Networks. Cumulus Networks, the Cumulus Networks Logo, and Cumulus Linux are trademarks or registered trademarks of Cumulus

Networks, Inc. or its affi l iates in the U.S. and other countries. Other names may be trademarks of their respective owners. T he registered trademark

Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world -wide basis.

