
Network Division

PJ Waskiewicz, Anjali Singhai Jain
Networking Division
Nov 2017



Network Division

• XDP software model
• HW hints in XDP programs
• Initial Performance Results
• Metadata layout considerations
• Programming HW hints
• Dynamically requesting hints with eBPF
• Wrap-up/Questions

Agenda

2



Network Division

• XDP programs are continuing to evolve and are becoming more complex

• Each XDP program does packet parsing to:
• Identify the packet type and extract packet header information
• Based on the use-case then the XDP program 
• may monitor incoming traffic on the network
• manipulate packets
• compute hash or xsums for modified packets
• make packet forwarding decisions based on some map lookups

(DROP/PASS/TX/REDIRECT/etc.)

XDP Software Model

3



Network Division

• What can present-day HW do to help
• Accelerate what is being done in XDP programs in terms of packet processing
• Offset some of the CPU cycles used for packet processing

• Keep it consistent with XDP philosophy
• Avoid kernel changes as much as possible
• Keep it HW agnostic as much as possible
• Best effort acceleration
• A frame work that can change with changing needs of packet processing

• Expose the flexibility provided by programmable packet processing pipeline to adapt to 
XDP program needs

• Help design the next generation Hardware to take it a notch up!

Our Goal

4



Network Division

HW Capability

5

Identify

Extract

Map 
lookup

compute

Meta data

HW pipeline

Driver and XDP hooks
XDP packet Buffer

Packet



Network Division

• How do you dynamically program the Hardware to get the XDP program the right kind of 
packet parsing help?

• How to pass the packet parsing/map lookup hints that the HW provides with every packet 
into the XDP program so that it can benefit from it? 

Two problems to solve

6



Network Division

HW hints flow

7

Packet Meta Data 
from NIC HW to XDP 

SW

XDP
program



Network Division

• Internal testing yielded promising results
• Test setup:

Target: Intel Xeon E5-2697v2 (Ivy Bridge)
Kernel: 4.14.0-rc1+ (net-next)
Network device: XXV710, 25GbE NIC, driver version 2.1.14-k
Configuration: Single Rx queue, pinned interrupt
XDP3: Zero packet parsing (best case scenario)
XDP_HINTS: Uses ptype provided by driver, no packet parsing

Performance improvements 

8



Network Division

Performance improvements, cont.

9



Network Division

• Continued testing on newer Xeon systems
• Try to observe any DDIO improvements
• Try minimizing memcpy()’s into XDP buffer headroom
• At least measure impact of memcpy() versus direct DMA
• Test with larger, more complex XDP programs
• Test with encap/decap, encryption, forwarding, etc.

Performance improvements, next steps

10



Network Division

• Approach 1: Common layout independent of underlying HW
• Requires community agreement on common structures
• Would be in the UAPI

• Approach 2: Vendor libraries in eBPF libraries
• Requires XDP/eBPF programs to detect underlying hardware

• Approach 3: Chained XDP programs
• Lightweight “shim” would contain vendor-specific logic
• Tail-call larger program with parsed metadata to run rest of logic

Metadata layouts – what to do?

11



Network Division

Chaining XDP programs

12



Network Division

• Existing hardware flow programming available via tc
• tc flower
• tc u32
• Difficult to match filters programmed via tc and which HW hints to 

use in XDP programs
• Any new match actions and/or fields for tc flower need kernel 

changes to implement
• Defining HW hints to program via eBPF sections can be dynamic 

and not require kernel changes to extend

Programming HW hints

13



Network Division

eBPF hint programming flow

14



Network Division

Type	of	HW	hint Size Description

Packet	Type U16 A	unique	numeric	value	that	identifies	an	ordered	chain	of	headers	that	were	
discovered	by	the	HW	in	a	given	packet.

Header	offset U16 Location	of	the	start	of	a	particular	header	in	a	given	packet.	Example	start	of	
innermost	L3	header.

Extracted	Field	
value

variable Example	Inner	most	IPv6	address

HW Hints

15

Match U32 Match	a	packet	on	certain	fields	and	the	values,		provide	a	SW	marker	as	a	hint	if	the	
packet	matches	the	rule

Checksum U32 A	total	packet	Checksum

Packet	Hash U32 Hash	value	calculated	over	specified	fields	and	a	given	key	for	a	given	packet	
type

Ingress	Timestamp U64 Packet	timestamp	as	it	arrives

Parsing Hints

Map Offload

Packet 
Processing Hints



Network Division

ELF Special Headers to request HW hints

16

struct	bpf_hw_hints_def	SEC("hw	hints")	rx_match	=	{
								.type	=	PACKET_MATCH,
								.fields	=	{PTYPE,	INNER_L3_SRC,	INNER_L4_SRC},
								.mask	=	{	0xff,	0.0.ff.ff,	0xffff},
								.value	=	{	0x10,	10.10.20.2,	65},
								.result	=	25	/*	This	hints	adds	a	match	rule	into	Hw,	which	creates	a	SW	defined	result	when	Hw	
finds	a	match	*/
								.size	=	sizeof(__u32),
									};

struct	bpf_hw_hints_def	SEC("hw	hints")	rx_offset	=	{
								.type	=	PACKET_OFFSET_INNER_L4,
								.size	=	sizeof(__u16),
									};

struct	bpf_hw_hints_def	SEC("hw	hints")	rx_ptype	=	{
								.type	=	PTYPE,
								.size	=	sizeof(__u16),
								};		/*	PTYPE	values	should	be	agreed	upon	between	the	SW	and	
the	HW	providing	the	hints,	the	driver	may	have	to	do	the	translation
between	the	two	*/



Network Division

• The ELF sections that carry Hw programming hints need to be passed over to the driver in 
some form so that it can program the HW accordingly.

• Introduce some new helper ndo_offload_xdp_hints() that the driver can call to extract 
what the XDP program can use as hints and program the HW accordingly.

• The driver hides all the HW programming details, the hints format is generic for any HW.
• A given HW may or may not be able to provide all the hints.
• It’s a best effort mechanism to offload what the HW can support.

Programming Flow

17



Network Division

• Performance results using HW hints are promising
• Still need to test on newer hardware
• Still need to test with more complex XDP programs
• Prototyping of eBPF-based HW hint programming needs to be 

completed
• Will provide RFC patches to community to bless direction
• Need feedback from community on how to make ready for merging
• Need agreement on actual metadata layout in xdp_buff headroom
• Need agreement if eBPF-based HW hint programming is right direction

Wrap-up, next steps

18



Network Division

Questions?

19





Network Division

Backup

21



Network Division

• Existing NIC hardware has packet processing capabilities and can provide this data in 
some form to the software.

• SmartNICs and programmable NICs will have capabilities to provide even more packet 
meta data to software

• Why not utilize these hints from the NIC Hardware already available as meta data to the 
NIC SW driver and make it available to XDP?

• Utilizing these hints will help the XDP programs to accelerate packet processing and take 
faster decisions based on the business logic for a given use-case

Using HW hints: motivation 

22


