
Performance Improvements of
Virtual Machine Networking

Jason Wang
jasowang@redhat.com

Host

Guest

Typical setup

vhost_net

TAPbridge

NIC

virtio-net drv

T
X

R
X

Host

Guest

vhost_net

macvtapmacvlan

NIC

virtio-net drv

T
X

R
X

How slow were we?

Agenda

● Vhost threading model
● Busy polling
● TAP improvements
● Batching virtio processing
● XDP
● Performance Evaluation
● TODO

Threading model

● one kthread worker
for both RX and TX

● half duplex
● degradation on heavy

bi-directional traffic
− more devices since

we are virt
− Complexity for both

management and
application

● Scale?

RX

TX

TX

RX

...

Vhost_net
kthread

New models

●
● ELVIS by Abel Gordon

− Dedicated cores for vhost
− Several devices shares a single vhost worker

thread
− Polling and optimization on interrupt
− Dedicated I/O scheduler
− Lack of cgroup support

● CMWQ by Bandan Das
− All benefits from CWMQ, e.g NUMA, dynamic

workers
− can be cgroup aware but expensive

Busy Polling

VCPU
thread

vhost_net
thread

IO notify

handle_tx handle_rx

guest

kvm

vhost

hardirq

softirq cpu

vhost_net
thread

IO notify

handle_tx

Event Driven Vhost

● vhost_net is driven by events:
− virtqueue kicks: tx and rx
− socket events: new packets arrived and sndbuf

available
● overheads

− caused by virtualization: vmentry and vmexit,
decoding/emulating

− caused by wakeup: spinlocks, scheduler latency

Limited busy polling (since 4.6)

VCPU
thread

vhost_net
thread

IO notify

handle_tx handle_rx

guest

kvm

vhost

hardirq

softirq cpu

vhost_net
thread

handle_tx

no notify

● still driven by events but busy poll for a while if
nothing to do
− maximum us spent on busy polling is limited by

userspace
− disable events and poll the sources

● overheads of virtualization and wakeups was
eliminated in the best case.

no wakeup

polling polling polling

Limited busy polling (since 4.6)

● Exit the busy polling loop also when
− signal is pending
− TIF_NEED_RESCHED was set

● 1 byte TCP_RR shows 5%-20% improvements
● Issues

− Not a 100% busy polling implementation
● This could be done by specifying a very large poll-us
● still some limitation caused by sharing kthread model

● Sometime user want a balance between latency
and cpu consumption

TAP improvements

socket receive queue

● TAP use double linked list (sk_receive_queue)
before 4.8
− cache threshing

● Every user has to write to lots of places
● Every change has to be made multiple places

− Spinlock is used for synchronization between
producer and consumer static inline void __skb_insert(struct sk_buff *newsk,

 struct sk_buff *prev, struct sk_buff *next,
 struct sk_buff_head *list)
{
 newsk->next = next;
 newsk->prev = prev;
 next->prev = prev->next = newsk;
 list->qlen++;
}

ptr_ring (since 4.8)

● cache friendly ring for pointers (Michael S.
Tsirkin)
− an array of pointers

● NULL means valid, !NULL means invalid
● consumer and producer verify against NULL, no need to

read the index of each other, no barrier needed
● no lock contention between producer and consumer struct ptr_ring {

int producer ____cacheline_aligned_in_smp;
spinlock_t producer_lock;
int consumer ____cacheline_aligned_in_smp;
spinlock_t consumer_lock;
/* Shared consumer/producer data */
/* Read-only by both the producer and the consumer */
int size ____cacheline_aligned_in_smp; /* max entries in queue */
void **queue;

};

producer only

consumer only

skb_array (since 4.8)

● wrapper for storing pointers to skb
● sk_receive_queue was replaced by skb_array
● 15.3% RX pps was measured in guest during

unit-test

issue of slow consumer

PTR
Z

PTR
0

PTR
1

PTR
2

PTR
7

PTR
8

PTR
9

PTR
0

PTR
X

producer index

consumer index

...X...

cache line

consumer index’

producer index’

...

● if consumer index advances one by one
− producer and consumer are in the same cache line
− cache line bouncing almost for each pointer

● Solution
− batch zeroing (consuming)

Batch zeroing (since 4.12)

PTR
Z

PTR
0

PTR
1

PTR
2

PTR
7

PTR
8

PTR
9

PTR
D

NUL
L

producer index

......

cache line

... ...

cache line

PTR
E

PTR
9

consumer_tail consumer_head

struct ptr_ring {
...
int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
int consumer_tail; /* next entry to invalidate */
...
int batch; /* number of entries to consume in a batch */
void **queue;

};

zeroing order

Batch zeroing (since 4.12)

PTR
Z

NUL
L

NUL
L

NUL
L

NUL
L

NUL
L

PTR
9

NUL
L

producer index

......

cache line

... ...

cache line

PTR
E

NUL
L

consumer_tail
consumer_head

● Start to invalidate consumed pointers only when
consumer is 2x size of cache line far from
producer

● Zeroing in the reverse order
− Make sure producer won’t make progress

● Make sure producing several new pointers does
not lead cache line bouncing

●
zeroing order

Batch dequeuing (since 4.13)

PTR
Z

NUL
L

NUL
L

NUL
L

NUL
L

NUL
L

producer index

...... ...

VHOST_RX_BATCH

PTR
E

NUL
L

consumer_head

● consumer the pointers in a batch, pointer
access is lock free afterwards

● reduce the cache misses and keep consumer
even more far away

● co-opreate with batch zeroing
● consumer_tail

PTR
0

PTR
1

PTR
2

PTR
3

PTR
4

PTR
5 ...

PTR
63

PTR
63

NUL
L

zeroing
round1

zeroing
round N

...

Batching for Virtio

Virtqueue and cache misses

N

2

address len flag nex
t

0x8000420
0

0x8
0

R
W NIL

flag avail_idx

...

N

M

2

flag used_idx

...

M

1

0x4
0

...

3rd miss: read descriptor

1st miss: read avail_idx

2nd miss: read idx from avail ring

5th miss: update used_idx

4th miss: write idx and len at
used ring

5 misses for each packet

How batching helps

N

2

address len flag nex
t

0x8000420
0

0x8
0

R
W NIL

flag avail_idx

...

3

M

2

flag used_idx

...

M

3

0x4
0

...
0x8000430

0

4

5

...

...

4

5 ...

...

3rd miss: read descriptors

1st miss: read avail_idx

2nd miss: read indexes
from avail ring

5th miss: update used_idx

N
5 misses for 4 packets
1.25 misses per packet in ideal case

4th miss: write indexes and lens
at used ring

Batching (WIP)

● Reduce cache misses
● Reduce cache threshing

− When ring in almost empty or full
− Device or driver won’t make progress when avail idx

or used idx changes
● Cache line contention on avail, used and descriptor ring

was mitigated
● Fast string copy function

− Benefit from modern CPU

Batching in vhost_net (WIP)

● Prototype:
− Batch reading avail indexes
− Batch update them in used ring
− Update used idx once for a batch

● TX get ~22% improvements
● RX get ~60% improvements
● TODO:

− Batch descriptor table reading

XDP

Introduction to XDP

● short for eXpress Data Path
● work at early stage on driver rx

− before skb is created
● Fast

− page level
− driver specific optimizations (page recycling ...)

● Programmable
− eBPF

● Actions
− DROP, TX, PASS, REDIRECT

Typical XDP implementation

● Typical Ethernet XDP support
− Dedicated TX queue for lockless XDP_TX

● per CPU or paired with RX queue
● Multiqueue support is needed

− Adding/removing queues when XDP is set/unset
− Run under NAPI poll routine

● after DMA is done
− Don’t support large packets

● JUMBO/LRO/RSC needs to be disabled during XDP set
● But TAP is a little bit different

XDP for TAP (since 4.13)

● Challenge for TAP
− Multiqueue is controlled by userspace:

● solution: No dedicated TX queue, sharing TX queue
● work even for single queue TAP

− Changing LRO/RSC/Jumbo configuration:
● solution: Hybird mode XDP implementation

− Datacopy was done with skb allocation:
● solution: Decouple data copy out of skb allocation,

build_skb()
− No NAPI by default:

● run inside tun_sendmsg()
− Zerocopy:

● done through Generic XDP, adjust_head

Hybrid XDP in TAP (since 4.13)

tun_net_xmit
()

TX skb array

tun_recvmsg
()

tun_sendmsg()

Native XDP

ndo_xdp_xmit()
ethX

build_skb()

XDP_REDIRECT
XDP_PAS
S

XDP_TX

XDP_DROP

Generic
XDP

helpers

small
packet

Zerocopy or
big packets

● Merged in 4.13
− mix using native XDP and skb XDP
− simplify the VM configuration (no notice from guest)

ndo_start_xmit(
)

XDP transmission for TAP (WIP)

● For accelerating guest RX
− An XDP queue (ptr_ring) is introduced for each tap

socket
− Storing XDP metadata in the headroom
− Batch dequeuing support
−

tun_net_xmit
()

ptr ring

tun_recvmsg
()

EthX poll()

Native XDP

tun_xdp_xmit
()

XDP
meta XDP data

XDP
meta XDP data

TX skb array

XDP_REDIRECT

vhost_net

XDP for virtio-net (since 4.10)

● Multiqueue based
− Per CPU TX XDP queue
− Need reserve enough queue pairs during VM

launching
● OFFLOADS were disabled on set on demand
● No reset

− Copy the packet if headroom is not enough
● A little bit slow but should be rare

● Support XDP redirecting/transmission
− Since 4.13

● No page recycling yet

Performance Evaluation

Test setup bridge

Host kernel

Guest

vhost_net

TAPbridge

ixgbe

testpmd

T
X

R
X

Remote hosttestpmd

● Two Intel(R) Xeon(R)
CPU E5-2630 v3 @
2.40GHz

● Back to back ixgbes
● Testpmd is used:

− traffic generator and
receiver

● 30% faster than
pktgen

− No interrupt
− Busy polling

● Tx and rx was
measured separately

●

txonly/
rxonly

txonly/
rxonly

RX performance

busy polling

RPS hash
 on demand skb_array

build_skb()
for

ixgbe

Batch
zeroing Batch

consumin
g

XDP +
RX batching

(WIP)

XDP
transmission

(WIP)

TX performance

busy polling

no backlog

MSG_MOR
E

Batch virtio
TX

(WIP)

no flow
caches
(WIP)

XDP

XDP vs testpmd

Host kernel

Guest

vhost_net

TAP

ixgbe

testpmd

T
X

R
X

Remote hosttestpmd

 Host
Userspace

Guest

vhost pmd

testpmd
(io)

ixgbe pmd

testpmd

T
X

R
X

Remote hosttestpmd

XDP_REDIREC
T

Here we are

perf – ksoftirqd RX

● 26.49% [kernel] [k] _raw_spin_lock
● 16.00% [ixgbe] [k] ixgbe_clean_rx_irq
● 15.99% [kernel] [k] sock_def_readable
● 5.63% [kernel] [k]

dev_get_by_index_rcu
● 5.48% [kernel] [k] __bpf_tx_xdp
● 4.42% [tun] [k] tun_xdp_xmit
● 4.29% [kernel] [k] xdp_do_redirect
● 3.70% [ixgbe] [k]

ixgbe_alloc_rx_buffers
● 2.53% [kernel] [k] swiotlb_sync_single
● 2.08% [kernel] [k]

percpu_array_map_lookup_elem

perf – vhost_net RX

● 43.38% [vhost_net] [k] handle_rx
● 9.86% [kernel] [k] copy_page_to_iter
● 8.87% [kernel] [k] _copy_to_iter
● 7.41% [vhost_net] [k] vhost_net_buf_peek
● 6.38% [vhost] [k] __vhost_get_vq_desc
● 6.22% [kernel] [k] iov_iter_advance
● 6.16% [kernel] [k]

copy_user_generic_unrolled
● 3.80% [vhost] [k] vhost_get_vq_desc
● 3.64% [vhost] [k] translate_desc
● 2.40% [kernel] [k] copyout

perf – vhost_net TX

● 21.49% [vhost] [k] translate_desc
● 13.41% [tun] [k] tun_get_user
● 10.12% [vhost] [k]

__vhost_get_vq_desc
● 6.54% [kernel] [k] iov_iter_advance
● 4.32% [kernel] [k] copy_page_from_iter
● 4.15% [kernel] [k]

copy_user_enhanced_fast_string
● 3.92% [ixgbe] [k]

ixgbe_xmit_xdp_ring.isra.88
● 3.56% [vhost_net] [k] handle_tx
● 3.46% [tun] [k] tun_sendmsg
● 3.23% [kernel] [k] page_frag_free

TODO/Raw ideas

● Raw ideas
− better integration with NAPI busy polling in

vhost_net?
− pure busy polling vhost_net?
− Better XDP co-operation on page recycling for

hardware NIC drivers?
− Build and receive skb/XDP in vhost_net?
− Rx zerocopy

● ndo_post_rx_buffer()?
● Please comment on virtio 1.1

Thanks

