
Guy Shattah, Rony Efraim

NetDev 2.2 (2017) – The Technical Conference on Linux Networking

Improving TC Filters insertion rate

© 2017 Mellanox Technologies 2

Contents

Why are we here?

Work done so far and what are the next steps

TC Handle lookup flow

The problem and progress so far

Flow of a TC filter request

The RTNL lock

Suggestion 1: Breaking the Lock

Suggestion 2: Multi-Threaded Batch under the Lock

Executing accumulated work

Comparison

© 2017 Mellanox Technologies 3

Why are we here?

SDN becomes more and more relevant.

OVS is the most popular SDN switch.

Growing number of concurrent connections

leads to increased HW offload demand.

Connections are offloaded by

inserting filters rules.

OVS datapath can be implemented using

the Linux TC subsystem.

© 2017 Mellanox Technologies 4

Brief: Work done so far and what are the next steps

Until recently, existing TC code allowed

for a poor rules/sec update rate.

A work done recently has significantly

improved insertion rate (~50,000 rules/sec)

Despite recent improvements - users

yearn for a rate of 1M/sec or better.

Achieving a major improvement will

demand a profound change.

© 2017 Mellanox Technologies 5

TC Handle lookup flow

 Input is a TC filter request

1. TC flow:

1. Search for device in a linear list.

2. Lookup specified qdisc.

3. Find a class attached to the qdisc.

4. Find the classifier with the priority.

2. Inside the classifier:

6. Lookup rule handle – classifier (*get)() method searches in a linear list.

7. Set Action - classifier (*change)() method reads

additional parameters from "struct * nlattr“, then sets

a new matching rule and action to act upon matching.

action resides in hash table with buckets of linked-lists

© 2017 Mellanox Technologies 6

The problem and the solution

Inside the classifier:

6. Lookup rule handle – classifier (*get)() method searches in a linear list

7. Set Action: The classifier (*change)() method searches in hash table

with buckets of linked-lists.

 (*get)() method’s linked-list was replaced by IDR.

 (*change)() - method’s which was using action

hash table with buckets of linked-lists was

replaced by IDR.

 Current stable insertion rate: ~50,000 rules/sec

(Tested on E3120 Xeon)

© 2017 Mellanox Technologies 7

Flow of a TC filter request

1. Netlink layer

2. RTnetLink Layer

 Accept message

 Lock RTNL

 Send to TC

3. TC layer

4. Classifier

5. HW (optional)

© 2017 Mellanox Technologies 8

The RTNL lock

 The RTNL Lock is a mutex located inside rtnetlink.

 Used to make sure no two threads may enter the

rtnetlink subsystem at the same time.

Florian Westphal - Yesterday: “The widespread use of the RTNL lock in

all major network configuration paths is a growing pain point,

f.e. a task adding an IP address prevents another from

seemingly unrelated tasks such as dumping TCclassifiers.

Furthermore, some code paths can hold the rtnl mutex for

very long times (in the order of several hundreds of

milliseconds in some cases). Rtnetlink is a netlink subsystem

used to inspect or change networking related configuration.”

© 2017 Mellanox Technologies 9

The RTNL lock (cont.)

RTNL lock effect on TC:

1. User process sends multiple TC filter requests in parallel (each

one in separate thread) to the TC layer (via rtnetlink layer)

2. RTNL lock forces one message at a time!

3. tc_ctl_tfilter() method can’t run in parallel 

© 2017 Mellanox Technologies 10

Suggestion 1: Breaking the Lock

 Breaking big lock into smaller locks.

Difficult task: many kernel methods and drivers rely on the lock.

 In order to remove it, one (or many) would have to analyze very carefully

all the code paths called after the lock. Find critical sections and

implement smaller granularity locks.

Florian W. Recently started working on this issue.

• There is a long way to go before the work is completed.

• Once the work is complete - vendors still have to make

necessary adjustments to remove RTNL dependencies.

© 2017 Mellanox Technologies 11

Suggestion 2: Multi-Threaded Batch under the Lock

 Don’t we already have netlink-batch support?

• Existing netlink-batch is provided for convenience

• Does not promote parallel execution.

 Suggestion 2.A: Multiple netlink messages.

 Suggestion 2.B: Compound netlink Message

 Issues:

• Parallel processing implies all actions mustn’t have

dependencies one on each other.

• Parallel processing forces kernel to run a multi-threaded code

even when the user application is single-threaded (and user possibly

does not want to utilize additional CPUs).

© 2017 Mellanox Technologies 12

Suggestion 2.A: Multiple netlink messages

Extending netlink interface by introducing batch operations.

Adding two new netlink flags: NLM_F_BEGIN and NLM_F_END.
- NLM_F_BEGIN : start accumulating messages.

- NLM_F_END : initiate parallel execution of accumulated messages.

Technical details :

• Accumulated messages list has to be maintained per user, with pre-defined quota

(to avoid overflow) and with some aging mechanism.

• Suggestion differs from the existing solution by the use of ‘begin’ and ‘end’

flags to explicitly specify that all the actions included are to be executed in

parallel, not one after another.

© 2017 Mellanox Technologies 13

Suggestion 2.B: Compound netlink Message

 Introducing a compound TC message, RTM_BATCHTFILTER.

• Message encapsulates multiple TC filter requests

• Facilitating work by sending all messages to be executed in TC layer in parallel

at once.

 Technical details :

struct tcmsg_batch_hdr {

__u32 tcmsg_len;

__u16 tcmsg_type;

__u16 tcmsg_flags;

}

© 2017 Mellanox Technologies 14

Executing accumulated work

Accumulated work is executed in a workqueue

• In suggestion 2.A (Multiple netlink messages):

- a result is returned per netlink message.

• In suggestion 2.B (Compound netlink Message(:

- On success: netlink success message.

- On failures: netlink message contains list

of pairs (msg index, error value).

© 2017 Mellanox Technologies 15

Comparison

2.B Compound TC message 2.A Multiple netlink Messages

 Process first message immediately  Requires NLM_F_END to start processing

 No slow-down memcpy()  memcpy() each message

 No internal bookkeeping  Keep a list of messages per process/user

 No internal list size limitation  Each list mustn't exceed predefined size

 Always a single system-call  Possibly requires more than one system-call

 RTNL lock is always taken once  RTNL lock might be taken more than once

 Delivers better performance  More generic

Thank You

