TTCN-3 and Eclipse TITAN for testing protocol
stacks

Harald Welte <laforge@gnumonks.org>



Protocol Testing

Important for:

= conformance to specification
= ensuring interoperability
= network security

= regression testing

performance



Protocol Testing

No standard methodology, language, approach, tool

= testing implementation against itself
» works only for symmetric protocols

e wouldn’t cover lots of problems

= testing against wireshark

» wireshark often way more tolerant than spec

= custom implementation
* in Python (e.g. using scapy)

 in Erlang (good binary encoder/decoder) or other languages

= specific tools like packetdrill



Protocol Testing

Personal story: During past years,

= ] implemented tons of [telecom] protocols / stacks at Osmocom.org
= ] was looking for better tools to help [automatic] testing
e primarily functional testing (correctness / conformance)

e not so much performance testing

= | figured Ideal test tool would...
 allow very productive and expressive way to describe encoding/decoding
 allow very convenient pattern matching on incoming messages

 allow exchange of messages asynchronously with implementation under test

= | stumbled on TTCN-3 occasionally and investigated



The TTCN-3 Language

= domain-specific language just for protocol conformance tests
TTCN history back to 1983 (!), TTCN-3 since 2000
used extensively in classic telecom sector (Ericsson, Nokia, etc.)
ETSI developed and published abstract test suites in TTCN-3 for
e IPv6, SIP, DIAMETER, ePassports, Digital Mobiel Radio, 6LoWPAN

Other bodies published test suites for
e CoAP, MQTT, MOST, AUTOSAR

But: Until 2015, only proprietary tools / compilers :(



Eclipse TITAN

= After TTCN-3 specification in 2000, Ericsson internally develops TTCN-3 toolchain

adopted for many Ericsson-internal testing of all kinds of products

proprietary software with commercial licenses

300,000 lines of Java + 1.6 Million lines of C++

Released as Open Source as "Eclipse TITAN" in 2015

e Not just TTCN-3 compiler, but also extensive documentations and many
protocol modules, test ports as well as Eclipse IDE, Log file viewer/visualizer,
etc.

= eclipse-titan part of standard Debian / Ubuntu archive, only one apt-get away

Great, we can finally use TTCN-3 in FOSS!



Eclipse TITAN compiler workflow

Human Developer

rites code

TTCN-3 source (ATS) @+ sources, a@

tten3_compiler

Binary Executable (ETS)

= TITAN actually compiles into executable binaries, it is not using a VM or scripting
o ATS: Abstract Test Suite (source code)
o ETS: Executable Test Suite (executable code)




TTCN-3 Language Features (with TITAN)

comprehensive type system

parametric templates

variety of encoders/decoders

automatic / comprehensive logging framework

powerful program control statements

built-in notion of tests cases, test suites, verdicts, ...

runtime / executor for parallel test components + aggregating results



TTCN-3 Basic Types

Simple basic types such as integer, float,boolen

Basic string types such as bitstring, octetstring, hexstring, charstring
(IA5) and universal charstring (UCS-4).

Structured Types record, set, record of, set of

Verdict type verdicttype
e can have either value none, pass, inconc, fail,or error

 verdict can only deteriorate (pass — fail) but never improve (error —
pass)

 every test case implicitly has a verdict, no need to explicitly declare a variable
of verdicttype



TTCN-3 Structured Types

A structured type is an abstract type comprised of other types, whcih can be nested. An
example for a record type (similar to a C-language struct) is shown below

type record MyMessageType {
integer fieldl optional<l>,
charstring field?2,
boolean field3

Y

1. optional members may be present or not



TTCN-3 Union Type

A union expresses a set of alternative types of which one alternative must be chosen.

type union MyMessageUnion {
integer fieldl,
charstring field?2,

Y

Difference to C-language union: i schosen () can be used to learn which of the union
members is chosen/defined!



Not-used and omit

= until a variable or field of structured type is assigned, it is unbound
= whenever a value is expected, TTCN-3 runtime will create an error for unbound

= in case of absence of optional fields, explicit omit value must be assigned!



Sub-typing

Sub-typing can be used to further constrain a given type. Typical examples include
constrained number ranges, and string patterns

type integer MyIntRange (1..100);

type 1nteger MyIntRange8 (0..infinity);

type charstring MyCharRange (“k”.."w");

type charstring SideType (”“"left”, "“right”);

type integer MyIntListRange (1..5,7,9);

type record length(0..10) of integer RecOflInt;
type charstring CrLfTermStrin (pattern ”*\r\n”);



Templates

= Matching incoming messages against some kind of specification is one of the most
common tasks in testing protocols

» some expected fields are static (message type)
» some expected fields are known (source address)
» some fields are chosen by sender (some identifier)

» some fields we don’t care (optional headers that may or may not be present)

= TTCN-3 Templates provide elegant solution for this, avoiding any explicit code to be
written

» templates can even be parametric, i.e. they can be instantiated with
"arguments"

= templates can also be used for sending messages, if they are fully specified/qualified



Templates

// Value list template
template charstring tr SingleABorC := (”"A”, ”"B”, "C");

// Value range

template float tr NearPi := (3.14 3.15);
template integer tr FitsToOneByte := (0 .. 255);
template integer tr GreaterThanZero := (1 .. infinity);

// Intermixed value list and range matching
template integer tr Intermixed := ((0..127), 200, 255);



Matching inside values

// Using any element matching inside a bitstring value
// Last 2 bits can be '0' or '1'
template bitstring tr AnyBSValue := "1011012?'B;

// Matches charstrings with the first character "a"
// and the last one "z"
template charstring tr 0 := pattern "a*z";

= more capabilities using complement, ifpresent, subset, superset,
permutation constructs not covered here



Parametric Templates

See below for an example of a parametric template:

type record MyMessageType {
integer fieldl optional,
charstring field2,
boolean field3

Y

template MyMessageType trMyTemplte (boolean pl param) := {
fieldl : = 2, // present, but any value
field2 : — (//B/I, //OI/, /IQ/I) ,
field3 := pl param

'

The built-in match () function can be used to check if a given value matches a given
template. Some TTCN-3 statements such as receive () have built-in capabilities for
template matching, avoiding even the explicit call of match () in many cases.



Template Hierarchy

Using modified templates, one can build a hierarchy of templates: From the specific to the
unspecific

template MyMsgType t MyMsgAny := {
msg type := ?,
foo := bar

I

template MyMsgType t MyMsg23 modifies t MyMsgAny := {
msg type := 23,

I

where

= t MyMsgAny matches a message with any message type and "foo=bar", while

= t MMyMsg23 matches only those that have "foo=bar" and "msg_type=23"



Encoders/Decoders

= type system, templates, matching are all nice and great, but we need to get data from
wire format into TTCN-3 abstract types

= TTTCN-3 specifies importing of formal schema definitios, such as ASN.1, IDL, XSD
(XML) and JSON

= TITAN has additional codecs for those (many) protocols that lack formal syntax
* raw codec for binary protocols (e.g. GTP)

e text codec for text based protocols (e.g. HTTP, MGCP, IMAP, ...)

= codecs allow you to express/describe the format (declarative programming) rather
than the usual imperative approach



TITAN raw codec: UDP Example

How to express an UDP header using TITAN raw codec

type integer LIN2 BO LAST (0..65535) with {
variant “FIELDLENGTH(16), COMP (nosign), BYTEORDER (last)”
i
type record UDP header {
LIN2 BO LAST srcport,
LIN2 BO LAST dstport,
LIN2 BO LAST len,
LIN2 BO LAST cksum
} with { wvariant ”“FIELDORDER (msb)” };
type record UDP packet {
UDP header header
octetstring payload
} with {
varliant (header) ”“LENGTHTO (header, payload), LENGTHINDEX (len)”



TITAN raw codec: GTP Example

How to express an GTP header using TITAN raw codec

type record GRE Header {
BIT1 csum present,
BIT1 rt present,
BIT1 key present,

OCTZ2 protocol type,
OCTZ2 checksum optional,
OCTZ2 offset optional,
OCT4 key otional,
} with {
variant (checksum) "PRESENCE (csum present='1l', rt present='1'B)"

variant (offset) "PRESENCE (csum present='l'B, rt present='1'B)"
variant (key) "PRESENCE (key present='1'B)"



TITAN text codec: MGCP Example

type charstring MgcpVerb ("EPCF", "CRCX", "MDCX", "DLCX", "RQONT",
"NTFY",
"AUEP", "AUCX", "RSIP") with {
variant "TEXT CODING(,convert=upper case,,case 1lnsensitive)"

s

type charstring MgcpTransId (pattern "\d#(1,9)");
type charstring MgcpEndpoint (pattern "*@*x");
type charstring MgcpVersion (pattern "\d.\d") with {

variant "BEGIN('MGCP ")"
i
type record MgcpCommandLine {

MgcpVerb verb,
MgcpTransId trans 1id,
MgcpEndpoint ep,
MgcpVersion ver
} with |
variant "SEPARATOR(' ', '[\t ]+")"

variant "END ('\r\n', ' ([\r\n]) | (\r\n)'")"
b






Program Control Statements

= if /elselikeinC

select statement similar to C switch

for,while, do-while loops like in C

goto and label

break and continue like in C



Abstract Communications Operations
= TTCN-3 test suites communicate with implementation under test through abstract
TestPorts
» TestPorts can be implemented in TTCN-3 or C++ and linked in

» TestPorts must be connected before using send/receive operaitons

e TITAN provides TestPorts for e.g. packet socket, IP/UDP/TCP/SCTP socket,

" <port>.send (<ValueRef>) performs non-blocking send

» Literal value, constant, variable, specific value template, ...

" <port>.receive (<TemplateRef>) or <port>.receive performs blocking
receive

e literal value, constant, variable, template (with matching!), inline template

'... but if receive blocks, how can we wait for any of N events?



Program Control and Behavior

= program statements are executed in order
= blocking statements block the execution of the component

= occurrence of unexpected event may cause infinite blocking

// X must be the first on queue P, y the second

P.receive(x); // Blocks until x appears on top of queue P
P.receive(y); // Blocks until y appears on top of queue P
// When y arrives first then P.receive(x) blocks -> error

This is what leads to the a1t statement: alt declares a seto alternatives covering all events,
which

= can happen: expected messages, timeouts, ...

= must not happen: unexpected faulty messages, no message received, ...

= all alternatives inside alt are blocking operations



The alt statement

P.send (req)

T.start;

// .

alt {

[] P.receive(resp) { /* actions to do and exit alt */ }
[] any port.receive { /* handle unexpected event */ }

[] T.timeout { /* handle timer expiry and exit */ }
}

= []1is guard condition enables or disables the alternative
e usually empty [] equals [true]
e can contain a condition like [x > 0]

e very good for e.g. state machines to activate some alternatives only in certain
states while others may occur in any state



The alt and repeat statements

The repeat statement

= takes a new snapshot and re-evaluates the alt statement

= can appear as last statement in statement blocks of statements

P.send (req)

T.start;
alt {
[] P.receive (resp) { /* actions to do and exit alt */ }
[] P.receive(keep alive) { /* handle keep alive message */
repeat }
[] any port.receive { /* handle unexpected event */ }

[] T.timeout { /* handle timer expiry and exit */ }



TTCN-3 modules

TTCN-3 code is written in modules

= a test suite consists of one or more modules

= a module contains module definitions and an optional control part
e parameters (automatically configurable via config file)
 definition of data types, constants, templates
 definition of communications ports
 definition of test components, functions altstesp and test cases

e control part determines default order/execution of test cases

= modules can import from each other (think in python terms)



Examples

Let’s have a look at some real-world examples and do a bit of a walk-through before
continuing with the slides...



Logging

= TITAN runtime contains extensive logging framework

config file determines log level for various different subsystems
e e.g. any encode, decode, receive, transmit operations logged
e timer starts, expirations

» any changes to test case verdict

explicit logging from code by use of 1o0g () built-in function

ttcn3 logformat tool for pretty-printing log files

ttcn3 logmerge tool for merging/splicing multiple logs

log plugins e.g. for generating JUnit-XML available

« facilitates easy reporting / integration to Jenkins or other CI



Logging

Log file format example:

// abstract data type before encode
13:30:41.243536 Sent on GTPC to system

@GTP CodecPort.GtplcUnitdata : { peer := { connId := 1, remName :=
"127.0.23.1", remPort := 2123 }, gtpc := { pn bit := '0'B, s bit
:= '1'B, e bit := '0'B, spare := '0'B, pt := 'l1'B, version :=
'001'B, messageType := '01'0, lengthf := 0, teid := '00000000'0O,
opt part := { sequenceNumber := '3AAC'O, npduNumber := '00'0,
nextExtHeader := '00'0, gTPC extensionHeader List := omit },

gtpc pdu := { echoRequest := { private extension gtpc := omit } }

bl

// 'msg' contains encoded binary data actually sent via socket
13:30:41.243799 Outgoing message was mapped to

@IPL4asp Types.ASP SendTo : { connId := 1, remName :=
"127.0.23.1", remPort := 2123, proto := { udp := { } }, msg :=
'32010004000000003AAC0000'0 }



Logging

The same log file lines if run through ttcn3 logformat

13:30:41.243536 Sent on GTPC to system
@GTP CodecPort.GtplcUnitdata :

peer := {
connld := 1,
remName := "127.0.23.1",
remPort := 2123
}I
gtpc = {
pn bit := '0'B,
s bit := '1'B,
e bit := '0'B,
spare := '0'B,
pt := '1'B,
version := '001'B,
messageType := '01'0,
lengthft := 0,
teid := '00000000'0,
opt part := {
sequenceNumber := '3AAC'O,

npduNumber := '00'0O,



nextExtHeader := '00'0O,

gTPC extensionHeader List := omit
b
gtpc pdu := {
echoRequest := {
private extension gtpc := omilt

}
13:30:41.243799 Outgoing message was mapped to

@IPL4asp Types.ASP SendTo : {

connlId := 1,
remName := "127.0.23.1",
remPort := 2123,
proto := {
udp := { }

by
msg := '32010004000000003AAC0000'O



Existing TITAN Source

= Protocol encoding/decoding

« BSSAP+, BSSGP, BSSMAP, CoAP, DSS1, DUA, EAP, GRE, GTP, HTTP, ISUP,
LLC, M2PA, M2UA, MQTT, MongoDB, NDP, NS, NTAF, ROSE, SCTP, SDP,
SNDCP, STOMP, STUN, SUA, TLS, WTP, DNS, IP, SMPP, SNMP, IKEv2,
DHCP, PPP, RTP, TCP, UDP, XMPP, DHCPv6, SMTP, ICMP, RTSP, ICMPv6,
DIAMETER, FrameRelay, ProtoBuff, IUA, L2TP, M3UA, MIME, WebSocket,
H.248, IMAP, IPsec, SRTP, MSRP, ICAP, RADIUS

= Protocol Emulation
» M3UA, SCCP, SUA

= Test Ports

* GPIO, MTP3, Serial, SocketCAN, SCTP, SIP, HTTP, Telnet, UDP, pcap file,
pipe, SQL, TCP, SUNRPC, SSH, STDINOUT, sockets, LDAP



Further Reading

Ericsson TTCN-3 tutorial http://www.tten-3.org/files/TTCN3_ P.pdf

An Introduction to TTCN-3, 2nd Edition http://www.wiley.com/go/willcock_TTCN-
3_2e

Modules https://github.com/eclipse

More Modules http://git.eclipse.org/

Debian https://packages.debian.org/search?keywords=eclipse-titan

Ubuntu https://packages.ubuntu.com/search?keywords=eclipse-titan


http://www.ttcn-3.org/files/TTCN3_P.pdf
http://www.wiley.com/go/willcock_TTCN-3_2e
https://github.com/eclipse
http://git.eclipse.org/
https://packages.debian.org/search?keywords=eclipse-titan
https://packages.ubuntu.com/search?keywords=eclipse-titan

EOF

End of File



