
Improving TC Filters Insertion Rate

Guy Shattah, Rony Efraim
Mellanox, Ra’anana, Israel

[sguy | ronye] at mellanox.com

Abstract

Recent industry movement towards the use of Virtual Machines,

OVS, and hardware offloading has led to a new requirements: the

necessity for rapid update of TC filters. Until recently the existing

TC code allowed for a poor rate1 of merely 100 rules-updates/sec

per priority (in average). Recent progress has improved the inser-

tion rate to 50K/sec. However, this rate still does not satisfy the

users who yearn for a rate of 1M/sec or better. In this paper we will

discuss the existing situation, work done so far and ideas on adding

batching operation to TC and more future architecture enhance-

ments towards achieving this goal.

Keywords

Virtualization, switchdev, TC, OpenVSwitch, offload, flows,

tunnels

Introduction

Introduction to TC

Internet traffic engineering deals with the issue of perfor-

mance evaluation and performance optimization of opera-

tional IP networks. Traffic Engineering encompasses the ap-

plication of technology and scientific principles to the meas-

urement, characterization, modeling, and control of Internet

traffic [1].

Enhancing the performance of an operational network, at

both the traffic and resource levels, are major objectives of

Internet traffic engineering. This is accomplished by ad-

dressing traffic oriented performance requirements, while

utilizing network resources economically and reliably.

Traffic oriented performance measures include delay, delay

variation, packet loss, and throughput.

The optimization aspects of traffic engineering can be

achieved through capacity management and traffic manage-

ment. Capacity management includes capacity planning,

routing control, and resource management. Network re-

sources of particular interest include link bandwidth, buffer

space, and computational resources. Likewise, traffic man-

agement includes (1) nodal traffic control functions such as

traffic conditioning, queue management, scheduling, and (2)

other functions that regulate traffic flow through the net-

work or that arbitrate access to network resources between

different packets or between different traffic streams. [2]

1 Inserting 100,000 rules using E3120 Xeon processor

TC is Linux Traffic Control mechanism that includes the

sets of queuing systems and mechanisms by which packets

are received and transmitted on a router. This includes de-

ciding which packets to accept at what rate on the input of

an interface and determining which packets to transmit in

what order at what rate on the output of an interface. [3]

When the kernel needs to make a routing decision, it finds

out which table needs to be consulted.

Overview of TC

Queueing Disciplines (qdiscs) are scheduling objects which

may be classful or classless. When classful, the qdisc has

multiple classes which are selected by the classifier filters.

A given classful qdiscs can contain other qdiscs, a hierarchy

can be setup to allow differentiated treatment of packet

groupings as defined by the policy. Each qdisc is identified

via a 32-bit classid.

Classes are either queues or qdiscs. Qdiscs further allow for

more hierarchies as illustrated. The parent (in the hierarchy)

qdisc will schedule its inner qdiscs/queues using defined

scheduling algorithm (refer to a sample space further down).

Each class is identified via a 32-bit classid.

Classifiers/Filters are the selectors of the packets. They

stare at either packet data or metadata and select an action

to execute. Classifiers can be anchored on qdiscs or classes.

Each classifier type implements its own algorithm and is

specialized. A classifier contains filters which implement

semantics applicable to the classifier algorithm. For each

policy defined, there is a built in filter which matches first

based on the layer 2 protocol type.

Actions are executed when a resulting classifier filter

matches. The most basic action is the built-in classid/flowid

selector action. Its role is to sort which class/flow a packet

belongs to and where to multiplex to in the policy graph [4]

TC flower classifier

The flower filter matches flows to the set of keys specified

and assigns an arbitrarily chosen class ID to packets belong-

ing to them. Additionally (or alternatively) an action from

the generic action framework may be called. The Flower

classifier is one of the classifiers which supports hardware

offloading.

Brief Introduction to OVS

In a virtual server environments, the most common way to

provide Virtual Machine (VM) switching connectivity is via

a virtual switch. The virtual switch is basically a software

that acts similarly to a Layer 2 hardware switch providing

inbound/outbound and inter-VM communication.

One of the dominant virtual switches is OVS (Open Virtual

Switch) which switches frames between local VMs on the

host (sometimes called east-west traffic) and between local

VMs and remote VMs (sometimes called north-south traf-

fic). One major difference between OVS and a “regular”

IEEE Ethernet bridge is that OVS switch “flows” as oppose

to a regular Ethernet bridge which provides frame delivery

between VMs based on MAC/VLAN. [5]

The OVS DP (Open vSwitch kernel datapath) is a match-

action forwarding datapath. The information about the

match and actions to be taken on the packet which matches

are in a form of “flows”. These flows are inserted, modified

or removed by userspace.

OVS DP can be implemented using the Linux TC (Traffic

Control) subsystem. The TC subsystem existed long before

OVS DP and offers more flexibility. [6]

2 In the following paragraph, the words filter and classifier

are used interchangeably but refer to the same object.

Motivation for Improving TC Filters Insertion

Rate

Recent industry movement towards the use of VMs and

OVS along with the accelerating speeds of IP networks led

to growing number of new OVS connections.

One of the ways to implement the OVS DP is by using the

TC subsystem, each new connection entering the OVS pos-

sibly creates a new TC rule, hence improving TC rules in-

sertion helps to improving the OVS performance.

Until recently, existing TC code allowed for a poor rules-

updates/sec rate. This does not satisfy the existing require-

ments. A work done recently has significantly improved the

insertion rate, up to x500 faster than the older rate.

However, this recent improvement still does not satisfy the

users who yearn for a rate of 1M/sec or better. In this paper

we will discuss the existing situation, work done so far and

ideas on adding batching operation to TC and more future

architecture enhancements towards achieving this goal.

Review of the TC filter Insertion Flow2

To create a new TC filter rule, a user constructs a struct

tcmsg message, wraps it inside a netlink3 message, sets

netlink message type to RTM_NEWTFILTER and sends it

to the kernel. tcmsg message is composed of two parts:

struct tc_msg (which contains instructions to the generic TC

layer) and struct nlattr (which contains a list of attributes).

Once the message reaches the netlink layer in the kernel,

netlink calls a callback, which is actually tc_ctl_tfilter()

method, which applies the following procedure:

1. Searches for the device

2. Looks for the qdisc specified in the TC message.

3. Tries to find a class attached to the qdisc

4. Within that class looks for proto-tcf (transport classifier)

with the input priority.

5. If proto-tcf with this priority does not exist, creates a

new one, according to the information provided in struct

nlattr.

6.The classifier tries to look up the Qdisc handle by using

the classifier (*get)() method and handles the success/fail-

ure for the lookup based on the flags specified in the

netlink message.

7. If all is good and we have a valid handle, the classifier

(*change)() method handles the new request. It reads addi-

tional parameters from "struct * nlattr": sets a new match-

ing rule and action to act upon matching.

Current work

Analyzing the code revealed two major bottlenecks.

The first bottleneck was found in step 6.

3 Netlink is used to transfer information between kernel and userspace

processes.

Several classifiers4 were storing the existing handles inside

a linear list which resulted in linear growth of any

added/looked-for/removed handle from this list. In accord-

ance to the past requirements this presented no problem.

Since storing 100 or 1,000 rules and looking up can be done

relatively sufficiently. However, moving to 1M entries

means that adding the 1,000,000 rule would take 1,000,000

iterations (!).

The second bottleneck was found in step 7. Each action was

stored inside a relatively small sized hash table (8 or 16

buckets), with each bucket points (once again) to a linear

list.

The solution we suggested was to replace the two structures

found in the bottlenecks into a radix tree. Looking further

we ended up choosing IDR as the most suitable solution.

The IDR library is used in the kernel to manage assigning

integer IDs to objects and looking up objects by their ID. It

is essentially and almost O(1) operations library imple-

mented on top of radix tree. Supporting add, remove, find

and additional operations. [8]

This has significantly improved the insertion rate.

Before this work: insertion of 100,000 rules took

approximately 1,000 seconds. (Effective rate of 100

insertions/sec) insertion of 1,000,000 rules did not end

within a reasonable time frame (several hours).

After this work: Insertion of 100,000 rules took

approximately 2 seconds while insertion of 1,000,000 rules

took about 20 seconds. [9] [10]

This work has effectively improved the rate to a stable rate

of 50,000 insertions/sec5. The following graph compares

rate of rules insertion to the time it took. Since the

improvement was exponential, the graph has logarithmic

scale.

4 As of Kernel 4.13 - Linear handle lookups were found in
the following classifiers: basic, bpf, flower, flow. Other
classifiers were either returning 0L or using hash table.

5 Benchmarked on Intel Xeon E5645@ 2.40GHz+128Gb

Suggested Improvements

Analyzing the code further revealed that achieving minor
improvement is possible with minor algorithm tweaks, but
achieving a major improvement will demand more than a
mere replacement of data structures. It will require profound
change of the algorithm, or a parallel execution.

The RTNL Lock is a mutex located inside rtnetlink6. It is
used to serialize rtnetlink requests by making sure no two
threads may enter the rtnetlink subsystem at the same time.

The widespread use of the RTNL lock in all major network
configuration paths is a growing pain point, f.e. a task
adding an IP address prevents another from seemingly
unrelated tasks such as dumping TC classifiers.
Furthermore, some code paths can hold the rtnl mutex for
very long times (in the order of several hundreds of
milliseconds in some cases). [7]

In TC, the RTNL Lock presents an interesting challenge.

When a user sends multiple filter messages down the netlink

messaging system and towards the TC layer, tries to insert

or delete rules then only one message at a time may enter

the tc_ctl_tfilter() method. Forcing any multi-threaded code

to act as if it were composed of a single thread within a sin-

gle process. Thus, multi-threaded rules insertion/deletion of-

fers no benefit.

While this paper deals with ideas on how to improve rules
insertion rate, the RTNL Lock is the foundation of the issues
this paper aims to solve. In this paper we review several
proposals towards solving this issue. We compare the
advantages and disadvantages of the different approaches
and finally recommend the solution which provides the best
performance.

Solution 1: Removing the Lock.

Removing locks is always the best solution but tend to be
the most difficult to achieve. As mentioned earlier, many
kernel methods and drivers rely heavily on the lock. In order
to remove it, one (or many) would have to analyze very
carefully all the code paths called after the lock. Find critical
sections and implement smaller granularity locks.

Florian W. Recently started working on this issue. [7]
However, there is a long way to go before this challenging
work is completed and a solution for the problem can be
reached as the required effort is enormous.

Even once Florian completes this work in the kernel, in
order to take full advantage of the patches, hardware

6 Rtnetlink is a netlink subsystem used to inspect or change

networking related configuration. Rtnetlink stands for

“Routing netlink”

0 50000 100000 150000 200000

1

10

100

1000

Rules

Se
co

n
d

s

Performance Comparison

with new IDR code old code without patches

vendors will have to make the necessary adjustments in
order to make sure their propriety driver code runs properly
without the RTNL Lock.

Solution 2: Multi-Threaded Batch under the Lock

The second approach is based on the pragmatic view that we
have to live with the lock and the suggestion is to try to
amortize the cost of the lock by implementing both batching
and multi-threading.

The kernel already allows user space to batch multiple
netlink datagrams in one message. However, once in the
kernel receives the batched netlink messages, they are still
processed independently and in series. So the only value
brought by batching in this case is amortization of the cost
of grabbing the lock, copying from kernel to user space etc.
More granular serialization of individual netlink messages
is achieved by other TC subsystems such as Actions;
however even in that case the actions are added in series.

Our suggestion, which we discuss here, aims at improving
things by replacing the serial ordering with parallel
processing of the messages once in the kernel.

We do want to caution the reader that this approach will only
work well if the individual batch entries are not dependent
on each other.

Another issue with this approach is forcing the kernel to run
a multi-threaded code and on several CPU cores even when
the user application is single-threaded and he does not want
to utilize additional CPUs.

This approach is divided into two smaller tasks: the first is
accumulating the work under the lock and the second is
executing the accumulated work, while under the lock.

Implementing Solution 2

Accumulating work

Suggestion 1: Multiple netlink messages.
Extending netlink interface by introducing batch operations.
Batch operations are series of actions which are meant to be
executed together. Two new netlink flags should be added:
NLM_F_BEGIN and NLM_F_END.

Upon receiving NLM_F_BEGIN, the underlying rtnetlink
subsystem will accumulate all incoming messages until a
message with NLM_F_END arrives. Once a NLM_F_END
flagged message was received a parallel execution is
initiated as described in later section of this paper. Messages
are accumulated in one list by copying (memcpy) the
incoming messages to an internal buffer.

Accumulated messages list has to be maintained per user,
with pre-defined quota (to avoid overflow) and with some
aging mechanism.

This suggestion differs from the existing solution by the use
of ‘begin’ and ‘end’ flags to explicitly specify that all the
actions included are to be executed in parallel.

Suggestion 2: Compound netlink Message
Extend TC interface by introducing a compound TC
message, RTM_BATCHTFILTER. This message will
encapsulate multiple TC messages. Facilitating the work by
sending all messages to be executed in TC layer in parallel
at once.

The new TC message header is used to replicate attributes
in nlmsg struct which should have been part of the tc_msg.

struct tcmsg_batch_hdr {
__u32 tcmsg_len;
__u16 tcmsg_type; /* Message contents */
__u16 tcmsg_flags;

}

The compound message looks like a series of trio:

tcmsg_batch_hdr + tcmsg + nlattr and ends with a
tcmsg_batch_hdr with len 0.

As for the attributes of struct tcmsg_batch_hdr:

tcmsg_len is the size of the trio. tcmsg_type contains same
value as nlmsg_type would contain, i.e. a netlink message
type, for example: RTM_NEWTFILTER. tcmsg_flags
contains same value as nlmsg_flag would contain, for
example: NLM_F_CREATE.

0. struct nlmsghdr // netlink header

1. struct tcmsg_batch_hdr

2. struct tcmsg

3. struct *nlattr

4. struct tcmsg_batch_hdr

5. struct tcmsg

6. struct *nlattr

7.
X. last entry: struct tcmsg_batch_hdr with size = 0;

Executing accumulated work
Accumulated work is executed in a workqueue and runs in
parallel until completion. In suggestion 1, a result of the
running action is returned per netlink message. Same as a
series of message without the new introduced batch flags.
In suggestion 2, if all operations completed successfully
then the netlink message return value is success. Otherwise
the returning netlink error message contains a list of pairs

(msg index, error value). This message is returned per a
compound TC message.

Comparison

Suggestion 1: Multiple netlink Messages.
1. Need to wait for NLM_F_END in order to
 start processing.
2. Need to memcpy() each message
3. Need to keep a list of messages per process/user.
4. Need to make sure each list doesn't exceed
 predefined size limit.
5. Possibly requires more than one system-call.
6. RTNL lock is might be taken more than once, for
 long batches.

Suggestion 2: Compound TC message
1. Can process first message in batch immediately.
2. No slow-down memcpy().
3. No internal bookkeeping.
4. No internal list size limitation.
5. Always a single system-call.
6. RTNL lock is always taken once. Max size of netlink
message will be increased to include larger batch.

To conclude, Suggestion 1 is more generic, but suggestion 2
will undoubtedly deliver better performance.

Discussion

Both suggestions have parallel execution in common,
possibly running requests out of order. Out of order
execution can be an issue if the batch has inter-message
dependencies.
There are two ways to handle this issue: forcing ordered
execution and ignoring it.

When forcing ordered execution additional step of ordering
the requests has to be supported by the classifiers. Adding a
‘comparison’ method to the classifier which allows TC to
run topological sort to create an order. Another issue is
failure handling - Once order is imposed and execution of
requests runs in parallel a single request might fail. The
ways to handle the failure is: full rollback, continue non-
dependent requests execution and ignoring the failure.

Ignoring the order is easier and transfers the responsibility
to the user. Therefore, to maximize utilization, we suggest
to avoid inter-message dependency. The kernel will not have
any mechanism to reinforce the order.

Additional measures have to be taken when supporting
parallel execution: the classifiers code should be modified
to support multi-threaded code and dependency on RTNL-
Lock should be removed. Same applies to the driver’s layer.

Since some of the classifiers and some of the drivers are still
not fully ‘multi-threaded compatible’ we make another

suggestion to add a ‘capabilities’ flag per classifier and per
driver. TC will not allow any non- ‘multi-threaded
compatible’ classifier or driver to run in parallel to a
compatible one.

Conclusion

Improving TC filter rules insertion rate is vital for support-

ing contemporary virtual switches. The current TC rules rate

is not sufficient. In this paper we presented several solutions

to the problem. Removing the lock and 2 ways to do under-

the-lock multi-threading. We strongly recommend on imple-

menting the new TC compound message, which has the best

performance by far, in order to support faster insertions.

References

[1] D. Awduche et al. – “Requirements for Traffic Engineer-

ing Over MPLS”, Network Working Group - RFC 2702.

[2] D. Awduche et al. – “Overview and Principles of Inter-

net Traffic Engineering”, Network Working Group - RFC

3272.

[3] Martin A. Brown – “Traffic Control HOWTO”.

http://tldp.org/HOWTO/Traffic-Control-HOWTO/

[4] Jamal Hadi Salim – “Linux Traffic Control Classifier-

Action Subsystem Architecture”, Proceedings of Netdev

0.1, Feb 2015

[5] Rony Efraim, Or Gerlitz – “Using SR-IOV offloads with

Open-vSwitch and similar applications”, Proceedings of

Netdev 1.2, Feb 2017

[6] Jiří Pírko, “Implementing Open vSwitch datapath using

TC”, Proceedings of Netdev 0.1, Feb 2015

[7] Florian Westphal, “RTNL mutex, the network stack big

kernel lock”, Proceedings of Netdev 2.2, Nov 2017

[8] Linux Inside, GitBook, https://0xax.gitbooks.io/linux-

insides/content/Initialization/linux-initialization-9.html

[9] Chris Mi Commit, net/sched: Change cls_flower to use

IDR,

https://github.com/torvalds/linux/com-

mit/c15ab236d69dd6dad24541400f460c47853803f8

[10] Chris Mi Commit, net/sched: Change act_api and

act_xxx modules to use IDR,

https://github.com/torvalds/linux/com-

mit/65a206c01e8e7ffe971477a36419422099216eff

https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-9.html
https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-9.html
https://github.com/torvalds/linux/commit/c15ab236d69dd6dad24541400f460c47853803f8
https://github.com/torvalds/linux/commit/c15ab236d69dd6dad24541400f460c47853803f8
https://github.com/torvalds/linux/commit/65a206c01e8e7ffe971477a36419422099216eff
https://github.com/torvalds/linux/commit/65a206c01e8e7ffe971477a36419422099216eff

