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Abstract 

Encrypted Internet traffic is becoming the norm, spearheaded by 

the use Transport Layer Socket (TLS) to secure TCP connections.  

This trend introduces a great challenge to data center servers, as 

the symmetric encryption and authentication of TLS records adds 

significant CPU overhead. New CPU capabilities, such as the x86 

AES-NI instruction set, alleviate the problem, yet encryption 

overhead remains high. Alternatively, cryptographic accelerators 

require dedicated hardware, consume significant memory band-

width, and increase latency. We propose to offload TLS symmet-

ric crypto processing to the network device. Our solution does not 

require a TCP Offload Engine (TOE). Rather, crypto processing 

is moved to a kernel TLS module (kTLS [5, 6]), which may lever-

age inline TLS acceleration offered by network devices. Trans-

mitted packets of offloaded TLS connections pass through the 

stack unencrypted, and are processed on the fly by the device. 

Similarly, received packets are decrypted by the device before be-

ing handed off to the stack. We will describe the roles and re-

quirements of the kTLS module, specify the device offload APIs, 

and detail the TLS processing flows. Finally, we will demonstrate 

the potential performance benefits of network device TLS of-

floads. 
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 Introduction 

In today’s networks, Transport Layer Security (TLS) is 
widely used to securely connect endpoints both inside data 
centers [1] and on the internet. TLS encrypts, decrypts, and 
authenticates its data, but these operations incur a significant 
overhead on the server.  
Fixed function hardware accelerators are known to give 

improved performance and greater power-efficiency when 

compared to running a software implementation on a 

general purpose CPU.  Cryptographic operation such as 

those used in TLS are very suitable for such hardware 

accelerators but they are not widely used in the context of 

networking. We believe that the reason is that the offload 

model is not good enough. 

Existing solutions fall into four categories:   

 TLS Proxy – A middlebox [2] is used to de-

crypt/encrypt all incoming/outgoing traffic. The 

middlebox is running a TCP connection against 

trusted machines and a TLS connection against 

untrusted machines, reducing the load on the 

trusted machine. However, if applied inside the 

data center, some traffic remains unprotected. 

 TOE – TCP offload engines have been around for 

a while [3]. A TOE could run a full TLS offload as 

well reducing PCI traffic and freeing CPU cycles 

even further. However, the TCP stack of TOE de-

vices is inflexible, hard to debug and fix when 

compared to a software TCP implementation. 

Moreover, with full TLS offload, security vulnera-

bilities could remain unfixed for a long time. 

 Crypto offload PCIe card – A dedicated PCIe 

card to accelerate cryptographic operations, such 

as [4]. In the case of a PCIe card performing en-

cryption/decryption operation, the data is sent to-

wards the card over PCIe. It is then modified and 

sent back for further processing. This solution 

trades computational overhead for higher stress on 

the memory subsystem, leaving less memory 

bandwidth for other tasks, while also consuming 

more power. 

 TLS in the kernel – Kernel TLS [5, 6] is kernel 

module for performing the bulk symmetric en-

cryption of TLS records by the kernel instead of 

using a user space library. It facilities using send-

file for TLS connections. Moreover, where previ-

ously data was copied once during encryption and 

once again to be sent by TCP, using this approach 

encryption and data copy from user-space to the 

kernel become a single operation. This approach 

can leverage the x86 AES-NI instruction set for 

accelerating AES operations. 



 

 

 

Motivation 

In our previous paper we presented the transmit path 
offload. We use Iperf with OpenSSL support to show the 
speedup obtained by using this offload. Our setup consists 
of two Xeon E5-2620 v3 machines connected back-to-back 
with Innova-TLS NICs (ConnectX4-Lx + Xilinx FPGA).  
We show the speedup gained by the transmitting machine in 
terms of throughput per CPU cycle using TLS1.2 and the 
AES-GCM-256 ciphersuite. We compare the following: 

- openssl version 1.0.1e with no offload 
- openssl version 1.0.1e with offload support but 

using the OpenSSL read/write API 
- tls syscall which uses OpenSSL for the TLS 

handshake and then calls the kernel’s TLS 
read/write system calls directly 

- tcp as an upper bound for potential speedup 
We use the bandwidth/cycles measurement because for all 
models the bottleneck is the receive side packet processing. 
In this work, we offload the crypto receive side processing. 
Using this offload improves end-to-end bandwidth with 
TLS. 

 

 

Model and Software Stack 

In this paper, we propose a model and a software stack (see 
Figure 2) where the payload of network packets is 
transformed in-place by the network device. This model 

retains all the benefits of using a robust software network 
stack while offloading the crypto data crunching to the 
device. Since the data needs to reach the network device 
regardless of the offload. This model doesn’t add any 
memory traffic or IO. 
 
We focus on the AES-GCM ciphersuite, and the TLS1.2 
protcol. It is possible to extend this model to other 
ciphersuites and TLS1.3 with some additional effort. 
 In the proposed model, the keys used by the TLS layer are 
offloaded to the NIC to which the connected socket is 
routed. The socket is marked as offloaded. From this 
moment onward packets of this TCP socket will be 
opportunistically decrypted by the device.  
Upon receiving a packet, the device identifies it for offload 
according to the 5-tuple and TCP sequence number. The 
NIC will offload matching packets producing packets with 
the same headers, while replacing the payload with 
plaintext. Out of order packets are not processed by 
hardware and these are unmodified by hardware. Plaintext 
or ciphertext indication is maintained per SKB and the 
software stack must prevent coalescing of plaintext and 
ciphertext SKBs. TCP congestion control, memory 
management, retransmission, and other enhancements 
remain unchanged. Finally, the TLS layer does the required 
crypto operation to make sure the user gets authenticated 
plaintext. Typically the entire record is received as plaintext 
and already authenticated by the HW, so no cryptographic 
operation needs to be performed. 
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machine. 



 

 

Figure 2. Kernel software stack for TLS offload for the fastpath 

flow. The NIC decrypts incoming TCP segments that carry TLS 

ciphertext. These packets go through the normal TCP/IP to the TLS 

layer where the TLS records are removed, but no crypto processing 

is required. 

TLS Rx Offload Challenges 

When the TLS oflload is initiated, the TLS provides the 

relevent TLS context to the NIC. The TLS context 

including keys and IV, TCP context including the 5-tuple 

and an expected sequence number, and the TLS record 

sequence number are provided to the NIC. The good flow 

assumes that matching TCP packets are received in-order. 

The NIC will decrypt all these packets and provide an 

indication to software, which could skip decryption. The 

problem is with packet drops/reordering. 

Upon packet drops/reordering, the NIC loses the state 

required to perform additional packet offload. For example, 

in TLS after reordering, the NIC might lose track of the 

TLS record format and TLS record sequence numbers, 

which are necessary and sufficient for inline TLS packet 

processing. 

If software would attempt to assign a new TLS context, 

then it would need to provide the TCP sequence of the next 

expected TLS record. However, software processes packets 

when hardware processing future packets. As a result, 

while there is traffic being received, software could not 

provide the TCP sequence number of the next expected 

TLS record. This is what we call the “race between 

software and hardware”. 

In Figure 3 we show an example of this race. Assume 

records R1-4 are sent on the wire. First, packets P1-3 arrive 

in one burst, and packest P4-6 arrive at a later time. While 

software processes P1-3, hardware receives and processes 

P4-6. Software only knows about R1 and R2, while 

hardware already processed some of R3 and it knows the 

location of record R4. Therefore, software does not have 

sufficient information to update the state of hardware to 

process the next record, e.g. R4. 

 

 
Figure 3: Race condition between software and hardware. While 

software is starting to process TLS record R2, hardware is already 

in the middle of reading TLS record R3. Therfore, software 

cannot resynchronize hardware without some hardware 

assistance. 

Control Path 

The control path is based on an extension of the 

kTLS[5][6] control plane. 

In response to a user offload request, kTLS calls 

tls_dev_add, a new NDO, for the netdevice used by that 

socket. kTLS provides the following parameters to the 

tls_dev_add NDO: 
- The socket 
- The crypto parameters  
- The TCP sequence of the start of the next expected 

TLS record to be received. 
If the device can offload this TLS session, the function 

returns success. From this moment onwards, any packet 

received over that socket can be plaintext. The device will 

track TCP sequence numbers, decrypt and authenticate all 

packets received from this socket.  

The sk_destruct function of the TCP socket is replaced 

to free resources related to TLS in the socket layer. 

Similarly, kTLS goes on to call another new NDO called 

ktls_dev_del, in order to free device driver and hardware 

resources. 

TLS also supports key renegotiation during a session. 

The renegotiation in TLS1.2 is based on an encrypted TLS 

handshake where cryptographic material is exchanged. 

Eventually, the change cipher spec message is sent by each 

party to mark that the next packet will be encrypted using 

the new keys. 

During renegotiation, the NIC might not identify the 

CCS record type. As a result a single record after the CCS, 

which is encrypted using the new key, is decrypted using 

the old key and its authentication check fails. We fix this in 

kTLS when new keys are added by the userspace handling 

the renegotation. kTLS will remove the old offload and go 

over all socket buffers of the TLS record after CCS in the 

receive queue reversing decryption offload. 

 

Data Path 

Each SKB that participates in Rx TLS offload must 

provide two additional bits of metadata to the kTLS layer: 
- tls_processed: Was this packet processed by the 

TLS accelerator?  
- tls_success: Was this packet processed 

successfully? 
Packets with mismatching metadata bits must not be 

coalesced at any layer except kTLS. 

The data path consists of a fast path and a slow path. In the 

fast path all packet are decrypted by hardware, and 

decryption is skipped entirely. 

The following pseudo code is performed by the kTLS layer 

for each record received: 
1. Initialize: 

a. partial_decrypt = 0; resync = 1; 
2. Go over all socket buffers in the TLS record: 

a. If skb is not tls_processed: 
i. partial_decrypt = 1; 

b. If skb is tls_processed and not 
tls_success: 

i. Return authentication error. 
c. If skb is tls_processed and tls_success: 

i. resync = 0; 
3. Else If resync: //fully encrypted record received 



 

 

a. Call dev->tls_rx_resync(..) 
b. tls_sw_decrypt_and_auth_record(..) 

4. Else If partial_decrypt: // Mixed plaintext and 
ciphertext 

a. tls_partial_decrypt_and_auth(..) 
5. Copy plaintext to userspace. 

 

Resynchronization 
 When the TLS offload accelerator experiences significant 
out-of-order it might lose the TLS record framing inside the 
TCP stream. This will prevent further offload until the 
context is resynchronized (resync). The kTLS layer could 
identify this by receiving a fully encrypted TLS record 
header while using TLS Rx crypto offload. Resync requires 
software to provide hardware with a new expected TCP 
sequence number of a TLS record and the corresponding 
TLS record sequence number. 

 Partial Decrypt 

 Due to reordering some packets are unmodified while 
others are decrypted. As a result, kTLS must validate the 
authentication and decrypt TLS records that consist of some 
ciphertext and some plaintext packets.  

In AES-GCM we need to obtain the ciphertext to 
authenticate the record. We do this by encrypting the 
payload of each decrypted packet. AES-GCM encryption is 
performed via a XOR of the data with the keystream, which 
is generated using a counter starting from the TLS record IV. 
The ciphertext is processed by the GMAC algorithm to 
produce the ICV which is compared to the authentication tag 
on the wire. Also, packets that are received encrypted need 
to be decrypted to get a plaintext TLS record. Overall, this 
partial decryption operation requires only a single pass over 
the TLS record, because each packet is XORed with the 
keystream once to get either the ciphertext or the plaintext, 
and all the ciphertext goes through the GMAC algorithm. 

In Figure 5, we show and example of a TLS record that 
consists of 4 packets. The ciphertext and plaintext packets 
are interleaved. Partial decryption will authenticate and 
decrypt the record in a single pass over the data. 

Note1: The authentication tag on the wire is never modified. 

Note2: We fallback to software decryption when the entire 
record is ciphertext. 

Note3: These ideas can be adjusted to CBC with some 
modifications. 

 

SKB Coalescing 
 SKBs with mismatching tls_processed/tls_success bits 
cannot be merged. This might be a problem when TCP 
attempts to prune its receive queues. A possible solution is 
to call kTLS to perform partial decryption on these SKBs. 
After partial decryption these bits could be reset and SKBs 
could be coalesced.  

 

Conclusion 

We suggest a kernel API for TLS receive side offload, and 

provide an initial performance evaluation. TLS offload 

improves performance by at least 3x over current state-of-

the-art kernel implementation, reducing per packet CPU 

overhead and enabling the use of encryption in high 

throughput. Receive-side crypto offload will improve the 

throughput of TLS connections. Further improvements 

gained by receive side offload is yet to be evaluated. 
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