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Abstract 

Recent industry movement towards the use of Virtual Machines, 

OVS, and hardware offloading has led to a new requirements: the 

necessity for rapid update of TC filters. Until recently the existing 

TC code allowed for a poor rate1 of merely 100 rules-updates/sec 

per priority (in average). Recent progress has improved the inser-

tion rate to 50K/sec. However, this rate still does not satisfy the 

users who yearn for a rate of 1M/sec or better. In this paper we will 

discuss the existing situation, work done so far and ideas on adding 

batching operation to TC and more future architecture enhance-

ments towards achieving this goal. 
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Introduction  

Introduction to TC 

Internet traffic engineering deals with the issue of perfor-

mance evaluation and performance optimization of opera-

tional IP networks. Traffic Engineering encompasses the ap-

plication of technology and scientific principles to the meas-

urement, characterization, modeling, and control of Internet 

traffic [1]. 

Enhancing the performance of an operational network, at 

both the traffic and resource levels, are major objectives of 

Internet traffic engineering.  This is accomplished by ad-

dressing traffic oriented performance requirements, while 

utilizing network resources economically and reliably.  

Traffic oriented performance measures include delay, delay 

variation, packet loss, and throughput. 

The optimization aspects of traffic engineering can be 

achieved through capacity management and traffic manage-

ment.  Capacity management includes capacity planning, 

routing control, and resource management.  Network re-

sources of particular interest include link bandwidth, buffer 

space, and computational resources.  Likewise, traffic man-

agement includes (1) nodal traffic control functions such as 

traffic conditioning, queue management, scheduling, and (2) 

other functions that regulate traffic flow through the net-

work or that arbitrate access to network resources between 

different packets or between different traffic streams. [2] 

                                                           
1 Inserting 100,000 rules using E3120 Xeon processor 

 

TC is Linux Traffic Control mechanism that includes the 

sets of queuing systems and mechanisms by which packets 

are received and transmitted on a router. This includes de-

ciding which packets to accept at what rate on the input of 

an interface and determining which packets to transmit in 

what order at what rate on the output of an interface. [3] 

 

When the kernel needs to make a routing decision, it finds 

out which table needs to be consulted.  

Overview of TC 

 
Queueing Disciplines (qdiscs) are scheduling objects which 

may be classful or classless. When classful, the qdisc has 

multiple classes which are selected by the classifier filters. 

A given classful qdiscs can contain other qdiscs, a hierarchy 

can be setup to allow differentiated treatment of packet 

groupings as defined by the policy. Each qdisc is identified 

via a 32-bit classid. 

Classes are either queues or qdiscs. Qdiscs further allow for 

more hierarchies as illustrated. The parent (in the hierarchy) 

qdisc will schedule its inner qdiscs/queues using defined 

scheduling algorithm (refer to a sample space further down). 

Each class is identified via a 32-bit classid. 



Classifiers/Filters are the selectors of the packets. They 

stare at either packet data or metadata and select an action 

to execute. Classifiers can be anchored on qdiscs or classes. 

Each classifier type implements its own algorithm and is 

specialized. A classifier contains filters which implement 

semantics applicable to the classifier algorithm. For each 

policy defined, there is a built in filter which matches first 

based on the layer 2 protocol type. 

 

Actions are executed when a resulting classifier filter 

matches. The most basic action is the built-in classid/flowid 

selector action. Its role is to sort which class/flow a packet 

belongs to and where to multiplex to in the policy graph [4] 

TC flower classifier 

The flower filter matches flows to the set of keys specified 

and assigns an arbitrarily chosen class ID to packets belong-

ing to them. Additionally (or alternatively) an action from 

the generic action framework may be called. The Flower 

classifier is one of the classifiers which supports hardware 

offloading. 

Brief Introduction to OVS 

In a virtual server environments, the most common way to 

provide Virtual Machine (VM) switching connectivity is via 

a virtual switch. The virtual switch is basically a software 

that acts similarly to a Layer 2 hardware switch providing 

inbound/outbound and inter-VM communication.  

One of the dominant virtual switches is OVS (Open Virtual 

Switch) which switches frames between local VMs on the 

host (sometimes called east-west traffic) and between local 

VMs and remote VMs (sometimes called north-south traf-

fic). One major difference between OVS and a “regular” 

IEEE Ethernet bridge is that OVS switch “flows” as oppose 

to a regular Ethernet bridge which provides frame delivery 

between VMs based on MAC/VLAN. [5] 

 

The OVS DP (Open vSwitch kernel datapath) is a match-

action forwarding datapath. The information about the 

match and actions to be taken on the packet which matches 

are in a form of “flows”. These flows are inserted, modified 

or removed by userspace. 

OVS DP can be implemented using the Linux TC (Traffic 

Control) subsystem. The TC subsystem existed long before 

OVS DP and offers more flexibility. [6] 

 

 

 

 

                                                           
2 In the following paragraph, the words filter and classifier  

are used interchangeably but refer to the same object. 
 

Motivation for Improving TC Filters Insertion 

Rate 

Recent industry movement towards the use of VMs and 

OVS along with the accelerating speeds of IP networks led 

to growing number of new OVS connections. 

One of the ways to implement the OVS DP is by using the 

TC subsystem, each new connection entering the OVS pos-

sibly creates a new TC rule, hence improving TC rules in-

sertion helps to improving the OVS performance. 

Until recently, existing TC code allowed for a poor rules-

updates/sec rate. This does not satisfy the existing require-

ments. A work done recently has significantly improved the 

insertion rate, up to x500 faster than the older rate.  

However, this recent improvement still does not satisfy the 

users who yearn for a rate of 1M/sec or better. In this paper 

we will discuss the existing situation, work done so far and 

ideas on adding batching operation to TC and more future 

architecture enhancements towards achieving this goal. 

 

Review of the TC filter Insertion Flow2 

To create a new TC filter rule, a user constructs a struct 

tcmsg message, wraps it inside a netlink3 message, sets 

netlink message type to RTM_NEWTFILTER and sends it 

to the kernel. tcmsg message is composed of two parts: 

struct tc_msg (which contains instructions to the generic TC 

layer) and struct nlattr (which contains a list of attributes). 

Once the message reaches the netlink layer in the kernel, 

netlink calls a callback, which is actually tc_ctl_tfilter() 

method, which applies the following procedure:  

 

1. Searches for the device 

2. Looks for the qdisc specified in the TC message.  

3. Tries to find a class attached to the qdisc 

4. Within that class looks for proto-tcf (transport classifier) 

with the input priority.  

5. If proto-tcf with this priority does not exist, creates a 

new one, according to the information provided in struct 

nlattr. 

6.The classifier tries to look up the Qdisc handle by using 

the classifier (*get)()  method and handles the success/fail-

ure for the lookup based on  the flags specified in the 

netlink message. 

7. If all is good and we have a valid handle, the classifier 

(*change)() method handles the new request. It reads addi-

tional parameters from "struct * nlattr": sets a new match-

ing rule and action to act upon matching. 

Current work 

Analyzing the code revealed two major bottlenecks.  

The first bottleneck was found in step 6. 

3 Netlink is used to transfer information between kernel and userspace 

processes. 



Several classifiers4 were storing the existing handles inside 

a linear list which resulted in linear growth of any 

added/looked-for/removed handle from this list. In accord-

ance to the past requirements this presented no problem. 

Since storing 100 or 1,000 rules and looking up can be done 

relatively sufficiently. However, moving to 1M entries 

means that adding the 1,000,000 rule would take 1,000,000 

iterations (!). 

The second bottleneck was found in step 7. Each action was 

stored inside a relatively small sized hash table (8 or 16 

buckets), with each bucket points (once again) to a linear 

list. 

The solution we suggested was to replace the two structures 

found in the bottlenecks into a radix tree. Looking further 

we ended up choosing IDR as the most suitable solution.  

The IDR library is used in the kernel to manage assigning 

integer IDs to objects and looking up objects by their ID. It 

is essentially and almost O(1) operations library imple-

mented on top of radix tree. Supporting add, remove, find 

and additional operations. [8] 

This has significantly improved the insertion rate.  

Before this work: insertion of 100,000 rules took 

approximately 1,000 seconds. (Effective rate of 100 

insertions/sec) insertion of 1,000,000 rules did not end 

within a reasonable time frame (several hours). 

After this work: Insertion of 100,000 rules took 

approximately 2 seconds while insertion of 1,000,000 rules 

took about 20 seconds. [9] [10] 

This work has effectively improved the rate to a stable rate 

of 50,000 insertions/sec5. The following graph compares 

rate of rules insertion to the time it took. Since the 

improvement was exponential, the graph has logarithmic 

scale. 

 

                                                           
4 As of Kernel 4.13 - Linear handle lookups were found in 
the following classifiers: basic, bpf, flower, flow. Other 
classifiers were either returning 0L or using hash table. 
 
5 Benchmarked on Intel Xeon E5645@ 2.40GHz+128Gb 

Suggested Improvements 

Analyzing the code further revealed that achieving minor  
improvement is possible with minor algorithm tweaks, but 
achieving a major improvement will demand more than a 
mere replacement of data structures. It will require profound 
change of the algorithm, or a parallel execution. 

The RTNL Lock is a mutex located inside rtnetlink6. It is 
used to serialize rtnetlink requests by making sure no two 
threads may enter the rtnetlink subsystem at the same time.  

The widespread use of the RTNL lock in all major network 
configuration paths is a growing pain point, f.e. a task 
adding an IP address prevents another from seemingly 
unrelated tasks such as dumping TC classifiers. 
Furthermore, some code paths can hold the rtnl mutex for 
very long times (in the order of several hundreds of 
milliseconds in some cases). [7] 

In TC, the RTNL Lock presents an interesting challenge. 

When a user sends multiple filter messages down the netlink 

messaging system and towards the TC layer, tries to insert 

or delete rules then only one message at a time may enter 

the  tc_ctl_tfilter() method. Forcing any multi-threaded code 

to act as if it were composed of a single thread within a sin-

gle process. Thus, multi-threaded rules insertion/deletion of-

fers no benefit.  

While this paper deals with ideas on how to improve rules 
insertion rate, the RTNL Lock is the foundation of the issues 
this paper aims to solve. In this paper we review several 
proposals towards solving this issue. We compare the 
advantages and disadvantages of the different approaches 
and finally recommend the solution which provides the best 
performance. 

 

Solution 1: Removing the Lock. 

Removing locks is always the best solution but tend to be 
the most difficult to achieve. As mentioned earlier, many 
kernel methods and drivers rely heavily on the lock. In order 
to remove it, one (or many) would have to analyze very 
carefully all the code paths called after the lock. Find critical 
sections and implement smaller granularity locks. 

Florian W.  Recently started working on this issue. [7] 
However, there is a long way to go before this challenging 
work is completed and a solution for the problem can be 
reached as the required effort is enormous. 

Even once Florian completes this work in the kernel, in 
order to take full advantage of the patches, hardware 

6 Rtnetlink is a netlink subsystem used to inspect or change 

networking related configuration. Rtnetlink stands for 

“Routing netlink” 
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vendors will have to make the necessary adjustments in 
order to make sure their propriety driver code runs properly 
without the RTNL Lock. 

Solution 2: Multi-Threaded Batch under the Lock 

The second approach is based on the pragmatic view that we 
have to live with the lock and the suggestion is to try to 
amortize the cost of the lock by implementing both batching 
and multi-threading. 

The kernel already allows user space to batch multiple 
netlink datagrams in one message. However, once in the 
kernel receives the batched netlink messages,  they are still 
processed independently and in series. So the only value 
brought by batching in this case is amortization of the cost 
of grabbing the lock, copying from kernel to user space etc. 
More granular serialization of individual netlink messages 
is achieved by other TC subsystems such as Actions; 
however even in that case the actions are added in series. 

Our suggestion, which we discuss here, aims at improving 
things by replacing the serial ordering with parallel 
processing of the messages once in the kernel. 

We do want to caution the reader that this approach will only 
work well if the individual batch entries are not dependent 
on each other. 

Another issue with this approach is forcing the kernel to run 
a multi-threaded code and on several CPU cores even when 
the user application is single-threaded and he does not want 
to utilize additional CPUs. 

This approach is divided into two smaller tasks: the first is 
accumulating the work under the lock and the second is 
executing the accumulated work, while under the lock.  
 

Implementing Solution 2  
 

Accumulating work 
 

Suggestion 1: Multiple netlink messages. 
Extending netlink interface by introducing batch operations. 
Batch operations are series of actions which are meant to be 
executed together. Two new netlink flags should be added: 
NLM_F_BEGIN and NLM_F_END.  

Upon receiving NLM_F_BEGIN, the underlying rtnetlink 
subsystem will accumulate all incoming messages until a 
message with NLM_F_END arrives. Once a NLM_F_END 
flagged message was received a parallel execution is 
initiated as described in later section of this paper.  Messages 
are accumulated in one list by copying (memcpy) the 
incoming messages to an internal buffer. 

Accumulated messages list has to be maintained per user, 
with pre-defined quota (to avoid overflow) and with some 
aging mechanism. 

This suggestion differs from the existing solution by the use 
of ‘begin’ and ‘end’ flags to explicitly specify that all the 
actions included are to be executed in parallel.  

 

Suggestion 2: Compound netlink Message 
Extend TC interface by introducing a compound TC 
message, RTM_BATCHTFILTER. This message will 
encapsulate multiple TC messages. Facilitating the work by 
sending all messages to be executed in TC layer in parallel 
at once. 

The new TC message header is used to replicate attributes 
in nlmsg struct which should have been part of the tc_msg. 
 

struct tcmsg_batch_hdr { 
__u32       tcmsg_len;               
__u16       tcmsg_type;           /* Message contents */ 
__u16       tcmsg_flags;        

} 
 
The compound message looks like a series of trio: 

tcmsg_batch_hdr + tcmsg + nlattr and ends with a 
tcmsg_batch_hdr with len 0. 

 
As for the attributes of struct tcmsg_batch_hdr: 

 

tcmsg_len is the size of the trio. tcmsg_type contains same 
value as nlmsg_type would contain, i.e. a netlink message 
type, for example: RTM_NEWTFILTER. tcmsg_flags 
contains same value as nlmsg_flag would contain, for 
example: NLM_F_CREATE. 

 

0. struct nlmsghdr       // netlink header 

1. struct tcmsg_batch_hdr 

2. struct tcmsg 

3. struct *nlattr 

4. struct tcmsg_batch_hdr 

5. struct tcmsg 

6. struct *nlattr 

7. .... 
X. last entry: struct tcmsg_batch_hdr with size = 0; 
 

Executing accumulated work 
Accumulated work is executed in a workqueue and runs in 
parallel until completion. In suggestion 1, a result of the 
running action is returned per netlink message. Same as a 
series of message without the new introduced batch flags. 
In suggestion 2, if all operations completed successfully 
then the netlink message return value is success. Otherwise 
the returning netlink error message contains a list of pairs 



(msg index, error value). This message is returned per a 
compound TC message. 

 

Comparison  
 

Suggestion 1: Multiple netlink Messages. 
1. Need to wait for NLM_F_END in order to  
    start processing. 
2. Need to memcpy() each message 
3. Need to keep a list of messages per process/user. 
4. Need to make sure each list doesn't exceed  
    predefined size limit.  
5. Possibly requires more than one system-call. 
6. RTNL lock is might be taken more than once, for  
    long batches. 
 
Suggestion 2: Compound TC message  
1. Can process first message in batch immediately. 
2. No slow-down memcpy(). 
3. No internal bookkeeping. 
4. No internal list size limitation. 
5. Always a single system-call. 
6. RTNL lock is always taken once. Max size of netlink 
message will be increased to include larger batch. 
 

To conclude, Suggestion 1 is more generic, but suggestion 2 
will undoubtedly deliver better performance. 

 
Discussion  

Both suggestions have parallel execution in common, 
possibly running requests out of order. Out of order 
execution can be an issue if the batch has inter-message 
dependencies. 
There are two ways to handle this issue: forcing ordered 
execution and ignoring it. 

When forcing ordered execution additional step of ordering 
the requests has to be supported by the classifiers. Adding a 
‘comparison’ method to the classifier which allows TC to 
run topological sort to create an order. Another issue is 
failure handling - Once order is imposed and execution of 
requests runs in parallel a single request might fail. The 
ways to handle the failure is: full rollback, continue non-
dependent requests execution and ignoring the failure. 

Ignoring the order is easier and transfers the responsibility 
to the user. Therefore, to maximize utilization, we suggest 
to avoid inter-message dependency. The kernel will not have 
any mechanism to reinforce the order. 

Additional measures have to be taken when supporting 
parallel execution: the classifiers code should be modified 
to support multi-threaded code and dependency on RTNL-
Lock should be removed. Same applies to the driver’s layer. 

Since some of the classifiers and some of the drivers are still 
not fully ‘multi-threaded compatible’ we make another 

suggestion to add a ‘capabilities’ flag per classifier and per 
driver.  TC will not allow any non- ‘multi-threaded 
compatible’ classifier or driver to run in parallel to a 
compatible one. 

 

Conclusion  

Improving TC filter rules insertion rate is vital for support-

ing contemporary virtual switches. The current TC rules rate 

is not sufficient. In this paper we presented several solutions 

to the problem. Removing the lock and 2 ways to do under-

the-lock multi-threading. We strongly recommend on imple-

menting the new TC compound message, which has the best 

performance by far, in order to support faster insertions.  
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