AF_PACKET V4 and PACKET_ZEROCOPY

Magnus Karlsson, Bjorn Topel, and John Fastabend'

Intel Inc.
Stockholm, Sweden

{magnus karlsson,bjorn.topel } @intel.com

Abstract

In this paper, the RFC of AF_PACKET V4 and
PACKET_ZEROCOPY is presented and discussed.
AF_PACKET V4 is a proposed new interface optimized
for high performance L2 packet processing. The interface
supports zero-copy semantics, to remove expensive mem-
cpy operations with the PACKET_ZEROCOPY setsockopt
option. Experimental results on a set of micro-benchmarks
show performance improvements up to 40 times, while
tcpdump/libpcap extended with V4 support shows a perfor-
mance improvement of around 20x. The techniques are fully
integrated with eXpress Data Path (XDP) and a possible
path forward for a unified implementation between XDP and
PACKET_ZEROCOPY is presented.

Keywords

Networking, Linux, AF_PACKET, raw sockets, packet pro-
cessing, zero-copy.

Introduction

Internet and networking as such has quickly become a vital
part of our society. The number of services that is more ef-
ficiently and better delivered over the Internet has sky rock-
eted and with this comes an ever increasing demand for more
bandwidth. 10, 25 and 40 Gbit/s Ethernet is the standard to-
day and 50, 100 and 200 Gbit/s speeds are around the corner.
To process packets, programmers are today using the highly
successful and popular socket abstractions, for example data-
gram (AF_INET) and raw sockets (AF_PACKET V2 and V3)
on the L2 level. However, the problem with these are that they
top out around 1 Mpps per core [7] or lower making it hard
to get applications to scale to higher networking speeds. As
a response to this, solutions such as RDMA [8], Netmap [9],
PF_RING [1], or bypass solutions such as DPDK [2] and ven-
dor specific SDKs such as ExaNIC [3] and OpenOnload [11]
have been developed. While they offer higher network pro-
cessing speeds, the problem is that they are quite different
from standard sockets and thus require extensive application
rewriting. Moreover, as they are not part of Linux, a num-
ber of good Linux features such as process isolation, power
management, hardware agnostic scheduling, and the security
feature ASLR cannot be used which can be detrimental to
systems building. The problem then becomes how to design a
high performance, HW agnostic and secure packet processing

fCovalent 10
Portland, OR
john.fastabend @ gmail.com

interface that is a logical continuation of the current popular
Linux socket interfaces?

In this paper, we present AF_PACKET V4 (abbreviated as
V4) and PACKET_ZEROCOPY (ZC). V4 is a proposed new
raw socket interface optimized for high performance packet
processing. It supports zero-copy semantics to remove the
performance penalty of memcpy operations, as well as opti-
mized memcpy semantics to support cases where hardware
cannot support zero-copy. When a V4 socket is created with-
out the ZC option, each packet is sent to the Linux stack and
a copy of it is sent to user space, so V4 behaves in the same
way as V2 and V3.

We then introduce a new optional setsockopt option called
PACKET_ZEROCOPY, enabling true zero-copy and zero
syscall semantics on the socket, while still maintaining Linux
security and isolation properties. This is achieved by map-
ping the NIC packet buffers into the user space process’ mem-
ory space, but the HW descriptors are only mapped to kernel
space. User space only sees HW agnostic virtual descriptors,
and it is the kernel’s responsibility to translate between the
virtual user space descriptors and HW descriptors. By de-
fault in this mode, a packet destined for this socket goes only
to user space. A packet destined for the kernel stack is copied
out of the packet buffer (not zero-copy anymore) or filtered
out by the NIC (still zero-copy) to another ring even before
it gets to the user space packet buffer. This way user space
cannot manipulate or see kernel data. The packet destination
process is determined by programming flow director or RSS
with tc or ethtool. With some possible future extensions, XDP
(eXpress Data Path) is also a flexible candidate for determin-
ing the destination.

V4 plugs into the existing XDP infrastructure even when
ZC is enabled. XDP programs will be executed on a sup-
plied page from the V4 packet buffer and XDP_PASS passes
a packet to the V4 user space packet buffer, without any
copies, when a packet is destined for a V4 process with ZC
enabled. The goal is that if you implement ZC support in a
driver, you get XDP support for free, hopefully speeding up
the adoption of both XDP and ZC, though the current code
base is not there yet. We are also planning on proposing an
XDP_PASS_TO_KERNEL option that will copy the packet
over to an SKB and pass it to the kernel stack in ZC mode.

To illustrate the approach, we have implemented support
on Intel I40E NIC [5] and veth, but it should hopefully be

easy to port to other NICs and virtual devices. We have
compared the performance of V2 and V3 against V4 with
and without ZC on a number of micro-benchmarks as well
as tcpdump/libpcap [6]. We found that the micro-benchmark
throughput improvements on the Intel I40E NIC are between
4x to 40x (400% to 4000%) for V4 with ZC and more of
mixed bag for V4 without ZC as we see some performance
decreases of up to 7% but mainly increases of up to 10%
(how to optimize this is discussed in the paper). For veth,
the improvements are up to 6x for V4 wit ZC. It was easy to
port libpcap to V4 as it already supports V2 and V3. For tcp-
dump/libpcap, the increase in max number of 64-byte pack-
ets that could be captured was around 20 times higher for V4
with ZC than with V3. These are really significant perfor-
mance increases that we hope will translate to a performance
boost in real life applications too.

This paper is outlined as follows. The first section goes
through the goals of AF_.PACKET V4 and its architecture,
while the next one shows how these two features are imple-
mented. This is followed by the experimental methodology
and experimental results comparing V2, V3 and V4. The next
section gives an overview of related work in the area. Future
work is reported and finally the paper is concluded.

Design

In this paper, two new features are proposed: AF_PACKET
V4 (V4) and PACKET_ZEROCOPY (ZC). V4 is a new user
space interface for AF_PACKET designed to behave largely
in the same way as the previous versions V2 and V3 for com-
patibility and portability reasons, but to offer higher perfor-
mance and more transparent error reporting. All packets are
sent to the kernel stack and a copy of the packet is sent to
user space through the V4 interface. V4 does not have to
use syscalls that perform a mode or context switch to kernel
space for the RX path, though the TX path still uses a syscall
to kick the TX code, but this could likely be optimized away
in the future. ZC is a new option to setsockopt that puts a V4
socket in zero-copy mode for even higher performance. At
this point, packets only go to user space and none go to the
kernel stack by default, so the semantics are different.

V4 executing without ZC, is referred to as copy mode and
V4 with ZC is referred to as zero-copy mode or just ZC.

Motivation and Goals

Why a new format? To motivate that let us first take a look at
the design goals of V4 and ZC. They are as follows:

1. Be an extension to AF_PACKET V2 and V3 so that an ap-
plication written for these are as easy to port as possible

2. To abide by all the security and isolation rules of Linux
user space

3. Complete HW agnostic interface for application portability
4. Better performance than V2 and V3

5. Eliminate copies when packets need to be transmitted or
buffered

6. Transparent error reporting for each packet sent and re-
ceived

7. Work together with XDP as it could greatly enhance the
usefulness of V4 in ZC mode

8. If ZC support is implemented in the driver you should get
XDP support for free. This is to facilitate adoption of both
ZC and XDP in drivers.

While items 1 to 4 likely need no further motivation since
programmers usually want easy, secure, but faster networking
performance, items 5 - 8 do. In item 5 we would like to avoid
having to copy a received packet when transmitting it as is
required by V2 and V3. Moreover, when implementing some
packet inspection functionality such as DPI or a telecom pro-
tocol such as GTP, PDCP, RLC or base-band MAC schedul-
ing and L2 processing, we would like to buffer some packets
either to reassemble some higher level protocols (DPI) or to
be able to resend them later if an acknowledgment was not
received. Therefore it is important that buffering does not re-
quire the application writer to pay the penalty of copying out
the packet to some temporary buffer as this costs in perfor-
mance. In V2 and V3 it is necessary to do this in order to use
the descriptor again, but with V4 we want to just leave the
packet as is and not pay this penalty.

The transparent and rapid error reporting is especially im-
portant in systems where certain packets are more important
than others and/or the relevance of a packet quickly decreases
with time. Mobile communication protocols are one good ex-
ample of an area that has both of these properties. When a
packet is received by the base-band stack it is transformed
to a digital version of a wave that is going to be sent over
the air. This wave (and the time it is sent) is optimized so
that it will reach its mobile device target with as few errors
as possible given an energy budget and the current quality of
the air environment between the antenna and the mobile de-
vice. Unfortunately, the environment changes very rapidly so
a packet might only be good for 1 ms. After that, it will not
reach its target without numerous bit errors. With these kind
of protocols, it is important to get feedback on errors quickly
so packets can be resent immediately, otherwise we have to
waste cycles to recompute the packet.

XDP (eXpress Data Path) is rapidly taking off as a key
Linux networking technology for high performance packet
processing operations. It executes secure code that can be in-
jected from user space. This XDP code is executed right after
the driver, but before an SKB is allocated, and can look at the
packet and make decisions if it should be dropped, forwarded
or sent up the Linux stack. It is our belief that XDP can,
with some possible future extensions outlined in the future
work section, be used for a number of interesting features in
conjunction with V4 and ZC such as packet scheduling, load
balancing, and supporting arbitrary descriptor formats (e.g.
virtio-net). XDP is ideally placed right after the driver to pro-
vide these kind of services for V4 in ZC mode. As of today, it
can already be used with ZC for introspection, DDoS mitiga-
tion, etc, but we believe this is only the start. To achieve this,
it should be as easy as possible to adopt ZC and XDP. If you
implement ZC support in a driver you should get XDP sup-
port for free. One implementation supporting both features is
the goal.

RX Descriptor Ring Packet Buffe

N 0-9
1]28

10-19
T
B e

20-29
) . yi
TX Descriptor Ring v

30-39

4049
Figure 1: There are three buffers shared between the kernel
and one user space process in V4: the RX descriptor ring,
the TX descriptor ring, and the packet buffer. The descriptor
rings point to packets located in the packet buffer. There are
no packets in the descriptor rings themselves.

idx =

P

idx =

How do we then offer better performance than V2 and V3?
In short, it is the combination of the following techniques:

e Batching of packets for sending and receiving

e Poll mode support to avoid taking interrupts when not nec-
essary, in the same spirit as NAPI

e No syscalls in the data path (Current implementation still
requires syscall for TX operations)

e Support a zero-copy mode for even higher performance
e Lock-less structures between user and kernel space

e Storing packets separately from descriptors in order to
avoid copying memory

e Make deviations from V2 and V3 when this offers a large
performance boost and the impact on contemporary appli-
cations is small

AF _PACKET V4

Let us start with the V4 in copy mode and how it achieves the
goals outlined above. V4 uses three shared memory areas to
communicate between kernel and user space as seen in Fig-
ure 1. Just as V2 and V3, it has one RX ring area containing
descriptors that describe received packets and one TX ring
area with descriptors that describe packets user space wants
to send. The third area is the packet buffer, the area containing
the packets themselves. So in contrast to V2 and V3, descrip-
tors point to packets located in the packet buffer. There are no
packets in the RX or TX descriptor rings as all packets reside
in the packet buffer. The descriptor rings are shared between
a single user space process and the kernel. They can never
be shared between multiple user space processes, therefore
every process will have its own set to communicate with the
kernel. The packet buffer can, on the other hand, be shared
between processes if desired.

As seen in Figure 2, V4 is configured much in the same
way as V2 and V3. The only difference is that we have
to register the packet buffer with the kernel using the new
PACKET_MEMREG setsockopt option. Note that the socket
used in creating the packet buffer is fed into the setsockopt
creating the RX and TX descriptor ring to associate a ring
with a packet buffer. In the example code, we have created a

new socket for the packet buffer so that if the application pro-
grammer would like to share the packet buffer with another
process, it could do so by sharing the file descriptor. Another
use case is if you want one packet buffer for RX and another
one for TX, as this can make sense if they do not share pack-
ets. But you could of course use the same fd as the one used
for the RX and TX descriptor rings. The rest of the configu-
ration is equivalent with V2 and V3. Note that V4 only ac-
cepts the PF_PACKET family and the ETH_P_ALL protocol
options.

The descriptor format of V4 is shown in Figure 3. Each de-
scriptor is 16 bytes, so on a system with 64 byte cache lines
there are four descriptors on each cache line. The descrip-
tor consists of a 64 bit index into the packet buffer to which
the descriptor ring is associated, the length of the packet, and
the offset (in bytes) into the packet where packet data starts.
This might be > 0 if the user has explicitly requested some
headroom using the PACKET _RESERVE setsockopt option,
XDP has added headroom, or if the HW device has added
some metadata. There is also an errno number passed along
with each descriptor so that we can get errors on each single
transaction, and finally a flag field. The flag field is currently
used for indicating if a descriptor is ready for consumption in
user space or in kernel space, called TP4_DESC_KERNEL,
and another flag for indicating if a packet continues in the
next frame, called TP4_PKT_CONT. For the rest of the pa-
per we will refer to a packet as a logically contiguous set of
data bytes that is contained in one or more fixed-sized frames
that do not necessarily have to be contiguous. Each descriptor
points to a single frame. A packet can be of variable size but
all frames are of the same size (between 2K and PAGE_SIZE),
set in the PACKET_MEMREG call. Default frame size is 2K
as this is large enough for a maximum sized standard Ethernet
frame.

One thing that deviates from both V2 and V3 is that we
do not have a packet header in V4, and the reason for this is
performance. We do not want the kernel to touch the packet
data as this will greatly reduce the performance (by up to 50%
in ZC mode). Only the application should touch the packet
data. If the kernel touches the packet data, it needs to be
brought into the cache on which the RX softirqd is running.
The application is, in all likelihood, running on another core,
so the packet needs to be transferred from the softirqd core
to the application core, incurring yet another cache transfer.
Having the kernel touch the packet data also interferes with
prefeching in the application.

This also means that we cannot have a struct sockaddr_ll
structure passed along with the packet in V4, but we do not
actually need the information stored there. This because we
made a design choice in V4 that packets will not start to flow
until you have made a bind () call. This means a V4 ap-
plication knows what family, protocol, and ifindex that were
used to do the bind. Most of the information in struct sock-
addr_Il is for the case when traffic flows from all interfaces
before a bind, a case that seems to be rarely used these days.
Removing it makes the implementation faster and simpler.
As for the sll_pkttype and sll_addr fields, these can be triv-
ially parsed by the application if it wants them. We do not
want to incur a performance penalty for all applications not

int tpver = TPACKET_V4;

sfd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL));
setsockopt (sfd, SOL_PACKET, PACKET_VERSION, é&tpver, sizeof (tpver));
fd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL));

mreq.addr = start_of_packet_buffer;
mreq.len = length_of_packet_buffer;
mreq.frame_size = 2048;

setsockopt (fd, SOL_PACKET, PACKET MEMREG, &mreq,

reqg.mr_£fd = £d;
reqg.desc_nr = number_of_descriptors;

sizeof (mreq));

ret = setsockopt (sfd, SOL_PACKET, PACKET_RX_RING, &req, sizeof (req));
ret = setsockopt (sfd, SOL_PACKET, PACKET_TX_ RING, é&req, sizeof(req));

/* txring is, as in V2/V3, mmapped in the same mmap call. */
rxring = mmap (0, 2 * reqg.desc_nr x sizeof (struct tpacket4_desc),

PROT_READ | PROT_WRITE, MAP_SHARED

txring = rxring[req.desc_nr];

/* Only for ZC mode =/

| MAP_LOCKED | MAP_POPULATE, sfd, O0);

setsockopt (sfd, SOL_PACKET, PACKET_ZEROCOPY, &queue_pair, sizeof (queue_pair));

11.s1l1_family = PF_PACKET;
11.s1ll_protocol = htons (ETH_P_ALL);

11.sl1ll_ifindex = if_ nametoindex (interface_name) ;
(struct sockaddr x)&ll, sizeof(11l));

bind (sfd,

Figure 2: The configuration of V4 in pseudo-code.

struct tpacketd_desc {
_u64d idx;
__u32 len;
__ul6 offset;
__u8 error; /* an errno x/
_u8 flags;
}i

struct tpacketd_qgueue {
struct tpacketd_desc *ring;

unsigned int avail_idx;
unsigned int last_used_idx;
unsigned int num_free;
unsigned int ring_mask;

}i

Figure 3: The descriptor format and queue structure of V4.
Note that there is no data header in V4.

needing these fields.

The V4 descriptor ring format shown at the bottom of Fig-
ure 3 is a lock-less single producer, single consumer queue
heavily inspired by a proposal by Michael Tsirkin [12] and
another one by Rusty Russel [10].

RX operations from user space simply check if the
TP4_DESC_KERNEL flag is not set for the current entry in
the descriptor ring. If it is, it retrieves the descriptor and ad-
vances to the next one until it either finds that the flag is not
set or the configured packet batch size is reached. Once it has
completed processing the packets, they are sent back to the
kernel either through the TX descriptor ring (by setting all

the info in the descriptor plus setting TP4_DESC_KERNEL)
or if the packet should not be sent, by putting it in the RX
descriptor ring. So no syscalls are needed for the RX path.
However, in the current implementation packets are not guar-
anteed to be sent until after you have called a send syscall
such as sendto().

PACKET_ZEROCOPY

To be able to offer significantly higher performance
we propose to introduce a new zero-copy mode for
a V4 socket invoked with the setsockopt option called
PACKET_ZEROCOPY. It sets up the HW NIC driver so that
packets are DMA’ed straight into user space. It is important
to note that TX and RX descriptors are still only mapped to
kernel space, as seen to the right in Figure 4. The kernel will
make sure that anything user space tries to do with these de-
scriptors is validated so that it cannot negatively affect the
kernel or other user space processes. This is also a require-
ment to be able to maintain a HW agnostic API to user space.
The price you pay for this performance boost is that the se-
mantics will be different. Since it is zero-copy, it requires
support in the driver, and some Linux networking function-
ality (such as qdisc and netfilter) will have no effect on the
packet anymore. All this will be explained in the rest of this
section.

Even in ZC mode, it is of course mandatory that the Linux
security and isolation rules for user space are followed. Our
implementation has the following properties in user-space:

e User-space cannot crash the kernel or another process

e User-space cannot read or write any kernel data or packets

Application Application

RX TX RX TX| Packet
t t I Buffer t t Buffor

Linux Driver

Linux Driver

RXt TXt IBuffer RXt TXt
NIC NIC

Nermal Mode

-l

Zerocopy Mode

Figure 4: In copy-mode all the three areas go through the ker-
nel, but in ZC mode, the packet buffer area is directly mapped
between the device and user space. Note though, for isola-
tion, security, and HW agnostic reasons, the RX and TX HW
descriptors are still only mapped to kernel space.

e User-space cannot read or write any data or packets from
other user space processes, unless this data is explicitly
shared

How do we then make sure that these rules are followed
with ZC? To make sure that user space cannot crash the ker-
nel or another process, the HW descriptor rings are only vis-
ible and modifiable by the kernel. User space only sees the
virtual V4 descriptor rings. To be able to make sure that one
process does not see any other processes packets or the ker-
nel’s packets we need to have one dedicated RX/TX queue
pair in the HW for each user space process. This queue pair
is filled only with data buffers from the packet buffer of that
application (these are packet buffers explicitly sent down by
the application), so any packet arriving on that queue pair will
be put in a buffer belonging to that user space process. How
do we then make sure that only packets destined for that spe-
cific user space process get in the queue in the first place? For
this we need to activate HW classification support in the NIC,
unless the application should get every single packet arriving
on a network interface.

What happens then if the NIC cannot support this due to
e.g. some exotic protocol or just old NIC HW? In that case,
packets will be DMA’ed into the kernel and copied out to the
relevant packet buffer in user space according to the desired
packet distribution policy (so not true zero-copy anymore).
As will be discussed later, we believe that XDP is a good and
flexible candidate for this functionality as it accepts validated
programs from user space that will be executed before the
packet is sent to the V4 user space.

ZC is enabled with the setsockopt shown in Figure 2. It
takes a queue pair as argument which refers to the queue pair
in the HW that should be used to provide the zero-copy packet
buffers. All traffic arriving on this queue pair will go to this

user space process. As an example, let us assume that the
system has eight cores. When the NIC driver is loaded, it
will assign one queue pair per core, that is eight in this case.
RX and TX (in copy mode) will use the queue pair local to the
cores that they are executing on. The application programmer
then has to pick one of these, or create a new queue pair, on
which ZC should be activated. Using ethtool or tc, the HW
can be configured so that only relevant packets are sent to that
application. This could be something as simple as saying that
all packets from an interface should be sent to queue pair X,
or that all packets should be mirrored to queue pair X (as in a
tcpdump or wireshark scenario), or that application X should
only get packets with a certain IP address and application Y
should get packets with another IP address.

In order to offer a large performance boost with ZC, we de-
cided to have the packets leave the kernel straight after XDP
in the driver (or right after the driver if there is no XDP sup-
port), before putting it into an SKB. This is the reason that
networking features, such as qdisc and netfilter, present in the
socket path will not work when ZC is enabled. ZC support put
into the existing SKB path did not offer more than a marginal
performance boost.

One option that we considered instead of having an explicit
queue pair number in the setsockopt was to just take over the
whole netdev to which we were bound. For example, binding
to ethO would provide all the traffic from ethO, while bind-
ing to ethO_vl would give us whatever traffic the eth0 HW
has been configured to send to ethO_vl. So if we had mul-
tiple apps, we would have to create multiple netdevs on the
device with, for example, ethtool, tc, or HW specific procfs
or debugfs interfaces. While we believe this would be more
elegant in that it does not expose queue pair to the applica-
tion, it has the drawback of potentially creating a plethora of
netdevs. It is also unclear if all HW devices would support
creating more netdevs like this.

XDP Support

XDP is very well suited to enhance and work in conjunction
with ZC as it is executed right after the driver. XDP can as
of now be used for a number of things in conjunction with
V4 and ZC as e.g., introspection, debug, and forwarding. All
the XDP actions will work as implemented and XDP_PASS
has been extended to pass the packet straight to the V4 packet
buffer without any copies in ZC mode. But what if the XDP
program would like to pass the packet to the kernel stack even
when executing in ZC mode? For this we propose to intro-
duce a new action in XDP called XDP_PASS_TO_KERNEL
that will copy the packet into an SKB and send it off to the
networking stack in the standard way. Note that the packet is
copied into the SKB, since user space should not be allowed
to see or be able to modify the packet after we have sent it to
the kernel stack. The XDP_PASS_TO_KERNEL defaults to
XDP_PASS in the non ZC case.

Implementation

Note that this implementation section is a snapshot of what
the code looks like right now and will change as we get feed-
back.

enum tp4_netdev_command {
TP4_ENABLE,
TP4_DISABLE,

}i

struct tp4_netdev_parms {
enum tp4_netdev_command command;
void *rx_opaque;
void *tx_opaque;
void (xdata_ready) (void x);
void xdata_ready_opaque;
void (xwrite_space) (void «x);
void *write_space_opaque;
void (xerror_report) (void =%, int);
void *error_report_opaque;
int queue_pair;

}i

int (xndo_tp4_zerocopy)

(struct net_device =*dev,

struct tp4_netdev_parms xparms);
int (*ndo_tp4_xmit)

(struct net_device =dev,

int queue_pair);

Figure 5: The two new netdevice operations required by ZC.

Copy mode is implemented in af_packet.c as it uses
SKBs. The control path of ZC shares the same code as copy
mode in af_packet.c, but it also needs to call the driver to
set up or tear down the DMA mappings of the packet buffer.
The data path for ZC, on the other hand, is completely imple-
mented in the driver. To support this, we introduced two new
netdevice operations in netdevice.h as shown in Figure
5. The first one enables or disables zero-copy support. It
takes a structure with a number of parameters that is supplied
by the code in af_packet.c, among those pointers to packet ar-
rays (described in the next section) for TX and RX, callbacks
to use when issuing a poll() from user space, a queue number
to bind to, and a callback with which to report errors. The
second NDO tells the transmit code to start to send messages
that are in the V4 TX queue.

In addition to the implementation supporting the perfor-
mance enhancing techniques reported earlier, we had three
implementation specific goals:

e Making the implementation of ZC as easy as possible

e To abstract away the actual implementation of the V4 for-
mat, so that the same driver code could be used without any
modifications for SKBs, V2, V3, virtio-net or any other
format in ZC mode (see future work for a discussion)

o To get XDP support for free when implementing ZC. Much
better to just have one implementation for both functions to
facilitate adoption.

In order to support these requirements we have introduced
packet arrays.

Packet Arrays

A packet array is a collection of frames that represents a num-
ber of packets. When ZC is enabled, the driver creates at least

two packet arrays, one for RX and one for TX, using the first
two calls in Figure 6. The first parameter tells the packet array
where to get its packets from and where to send them when
they are finished, which in our case is one of the V4 descriptor
queues. The second parameter decides how many frames the
packet array can hold, and then finally a pointer to the device
this packet array is associated with. Note that the af_packet.c
file also uses packet arrays to implement the copy mode path
of V4 as we found these concepts made the implementation
much easier.

In the data path in Figure 6, we start by calling
tpda_populate to fill the packet array with frames. For
an array connected to an RX queue, these are empty buffers
that the application wants the kernel to put packets into so it
can receive new packets. For TX, these are packets that the
process wants us to transmit. Validation of user space data
is performed in the populate function according to the policy
set by the enum tp4_validation in Figure 8. For RX this is
set to TP4_VALIDATION_IDX as we only need to validate
that the index field points to an entry inside the packet buffer.
All other entries in the descriptor will be overwritten by the
kernel. For TX, on the other hand, we need to perform a full
validation of the descriptor as this data will be used by the
kernel. This is accomplished by setting the validation to be
TP4_VALIDATION_DESC, which validates all fields in the
descriptor. Invalid entries are not put in the packet array and
are immediately sent back to user space with the appropriate
errno marked in the error field of the descriptor. Note that
these validations and DMA directions are automatically set
up by the tpda_rx_new and tp4a_tx_new functions.

The driver will then process each packet by calling
tpda_next_packet in aloop to retrieve each packet in the
packet array and process it. The same operation can be done
on frames instead by using tp4a_next_frame. Once there
are no more packets in the packet array (or the programmer
has decided that enough packets have been processed, due
to, for example, a NAPI poll weight threshold) we simply
call tp4a_flush to write the completed descriptors to user
space. For RX, these will be packets that user space receives.
For TX, these will be completions telling the application that
exactly these frames/packets have been successfully transmit-
ted.

Frames and packets are represented by frame sets. A frame
set can contain one or more frames that could be anything
from part of a packet to several packets. The functions op-
erating on frame sets are shown in Figure 7 and are used to
get frame properties such as length and data pointers, as well
as setting properties on the frame. This way the actual de-
scriptor format used in user space is not exposed to the driver
and the same code can be used to support a number of differ-
ent interfaces. See the future work section for more on what
interfaces could potentially be supported in the future.

Example: HW NIC Driver I40E

Intel® Ethernet 700 Series [5] is a range of contem-
porary network adapters that support I1GbE, 10GbE,
25GbE, and40GbE. The Linux kernel device driver
supporting this range of NIC is “i40e”, residing at
drivers/net/ethernet/intel/i40e in the kernel

In the control path:

struct tp4_packet_array *tpda_rx_new(void xrx_opaque,

size_t elems,

struct device =xdev)

struct tp4_packet_array *tpda_tx_new(void xtx_opaque,

size_t elems,

struct device =xdev)

In the data path:

void tpda_populate (struct tp4_packet_array =xa);
(bool tpda_next_packet (struct tpé_packet_array =xa,
process_packet (struct tp4_frame_set =*p);

while

}
int tp4a_flush(struct tp4_packet_array =*a);

struct tp4_frame_set xp) {

Figure 6: Main operations on packet arrays and conceptual programming flow.

bool tpd4f_next_frame (struct tp4_frame_set =*p)
bool tpdf_prev_frame (struct tpé4_frame_set *p)
u64 tp4f_get_frame_id(struct tpé_frame_set x*p)

u32 tp4f_get_frame_len(struct tp4_frame_set «*p)

u32 tp4f_get_data_offset (struct tp4_frame_set =*p)

void xtpdf_get_data(struct tp4_frame_set «*p)

bool tp4f_is_last_frame(struct tpd_frame_set =*p)
int errno)
u32 len,

void tpdf_set_error (struct tp4_frame_set «*p,
void tp4df_set_frame (struct tp4_frame_set xp,

ule offset, bool is_eop)

Figure 7: Example operations on frame sets producing either frames or packets if it has packet in its name.

enum tp4_validation {
TP4_VALIDATION_NONE,
TP4_VALIDATION_IDX,
TP4_VALIDATION_DESC
}i

struct tp4_packet_array {
void xqueue_opaque;
struct device =*dev;
enum dma_data_direction direction;
enum tp4_validation validation;
u32 start;
u32 curr;
u32 end;
u32 mask;
void* items[0];
bi

Figure 8: A packet array represents a batch of frames/packets
that the driver can operate on, independent on the format or
the final destination of the frames.

tree.

The implementation consists of four parts. First, instead of
allocating ingress buffers from the page allocator, we need to
“allocate” buffers by dequeuing buffers from the V4 queue.
Second, when an Rx buffer is filled, we need to complete the
buffer to user space. This is an asynchronous event, so we
need to track state from the V4 queue. In the regular SKB
path, the ingress HW descriptor ring is augmented by the
i40e_rx_buffer struct to track meta information about the
HW descriptor. Third, ndo_start_xmit-like functionality
for the V4 queue, i.e. pull Tx V4 buffers from user-space and

place them on the HW Tx descriptor ring. Fourth, complet-
ing a transmitted Tx frame back to the V4 queue. Again, this
requires tracking meta information about the descriptor.

All parts above fit very nicely into the packet array struc-
ture described in the Implementation section. The first part,
allocation, is exposed to the driver via the packet array func-
tion and getting buffers from user space is done by simply
calling tpda_populate. Tracking V4 meta information
is done implicitly by the packet array, so no additions were
needed in the i40e_tx buffer and i40e_rx buffer
structures. Completing entries back to user space is simply
a tp4a_flush. For the transmit path, pulling frames from
user space is, again, the populate function, and completion is
a simple flush.

The current implementation does all work, i.e. allocate,
update Rx/Tx HW descriptors and completion from a NAPI
poll function, to minimize explicit locking.

Example: Virtual Driver veth

Veth is a virtual Ethernet device commonly used with the
Linux bridge, SW switches and containers. We used it as
an example of how ZC could be supported in a virtual device
that is usually used to communicate between two processes.
The implementation with packet arrays becomes small. Each
process that enables zero-copy creates two packet arrays: one
for RX and another one for TX. The code in the data path is
then what is shown in Figure 9.

Note that this code works even on SKBs. Let us say that the
other process does not have ZC enabled, but the calling pro-
cess does. In this case tp4a_flush will allocate an SKB
for each packet and transfer the descriptor metadata and the
packet to the SKB so that the receiving process will get an

tpd4a_populate (my_tpda_tx);

tpd4a_populate (other_process_tpda_rx);

tpda_copy_packets (other_process_tpda_rx,
my_tpda_tx);

tpd4a_flush(other_process_tpda_rx);

tpd4a_flush (my_tpda_tx);

Figure 9: The data path of ZC in veth written in pseudo-code.

SKB sent to it. The function tp4a_populate can also pop-
ulate the array with packets from SKBs to support the case
when we would like to send data from a process without ZC
enabled to one that has it enabled. Finally, the code can also
be used for the SKB to SKB case, but it is not efficient since
(at least the current implementation) will unnecessarily con-
vert the SKB twice.

XDP Implementation Support

An XDP program is executed by tp4a_flush on each
frame in the packet array that is ready to be flushed. If the
XDP program returns XDP_DROP, the packet will simply be
dropped from the packet array. XDP_TX will send the packet
out again and then remove the frame from the packet array,
while XDP_PASS will leave it as is so that it will be sent to
user space.

Note that XDP does currently only support packets up to
PAGE_SIZE in size and if you enable XDP you will not be
able to use packets that are larger than PAGE_SIZE with ZC.

Discussion: Unifying XDP and ZC Support

Both XDP and ZC require driver additions to work in both
the RX and TX paths. Would it not be good if we only had to
implement this once and get both XDP and ZC support? Here
is a high-level discussion on how to achieve this with packet
arrays, so if you implement ZC support you get XDP support
for free. Note that this is a discussion topic and not part of the
RFC nor the experimental evaluation.

In the previous section we showed how XDP support is in-
tegrated into the packet arrays when we have ZC on, but we
also have to support XDP with packet arrays when ZC is not
turned on. We believe this could be achieved by introducing a
source/sink concept in the packet array. (In the current imple-
mentation, the source and sink are always a V4 queue.) The
source that tp4a_populate will get packets/buffers from
will be (when ZC is not used) the standard buffer allocator
used by the driver. The sink used by tp4a_flush to send
packets will then be the already present “fill in the SKB and
send it up the stack” path. With something like this, we be-
lieve we could support both non-ZC and ZC with the same
packet array code. One key challenge here will be to deliver
the same performance (or close enough) with packet arrays in
the non-ZC case as the original RX and TX code.

What to do then with the two sets of NDOs? The
ndo_xdp_flush is used to kick the TX path to send the packets
that got the action XDP_TX. Similarly, ndo_tp4_xmit is used
to kick the TX path to send the packets in the V4 TX ring.
Neither of them take the RTNL lock. As packets now reside
in a single packet array independent if they are ZC and/or had

XDP executed, we believe it should be possible just to have
one single NDO that simply flushes the packet array with a
tpd4a_flush. ndo_tp4_zerocopy enables and disables ZC
while ndo_xdp enables and disables XDP. For these it proba-
bly makes the most sense just to keep them separate as they
pass down data that is quite different.

Experimental Methodology

We run on a dual socket system with two Broadwell ES5-
2660 @ 2.0 GHz with hyperthreading turned off. Each
socket has 14 cores which gives a total of 28. The mem-
ory is DDR4 @ 1067 MT/s and the size of each DIMM
is 8192MB and with 8 of those DIMMs in the system we
have 64 GB of total memory. We run Linux version 4.14-
rc4, the distribution we use is Ubuntu 16.04.2 LTS, and the
compiler used is gcc version 5.4.0 20160609. The NIC is
an Intel I40E 40Gbit/s networking card version 2.1.14-k with
firmware version 5.05. Only a single interface is used on the
card. The BIOS is from Intel and has version number GR-
RFCRB1.86B.0261.R01.1507240936. Turbo boost has been
turned off as well as power save to provide more stable per-
formance numbers. All the four types of HW prefetchers are
turned on. The V4 and ZC patch set is the limited distribu-
tion RFC v2 but our goal is to update this paper with results
from the first public RFC sometime after it is released. Pack-
ets are generated by commercial packet generator HW that is
generating packets at full 40 Gbit/s line rate.

Benchmark | Description
rxdrop RX only without packet data touch
txpush TX only without packet data touch
12fwd RX + swaps MAC headers + TX
tcpdump Captures packets. Uses libpcap

Table 1: The micro-benchmarks used in this paper.

The micro-benchmarks used in this study for the I40E NIC
are shown in Table 1. The first four are part of the RFC while
libpcap is version 1.9.0-PRE-GIT_2017_10_09 extended to
support V4 and ZC with tcpdump version 4.10.0-PRE-GIT
on top of it extended to be able to pick V3, V4 and/or ZC
support from the commandline. For veth, we use 12fwd with
a configurable amount of packets being ping-ponged between
two processes. These are generated by one of the processes
before the start of the benchmarking run. Each benchmark
runs for 60 seconds and each application process executes on
its own core with cpu affinity. One core for the I40E bench-
marks and two for the veth benchmarks. The RX and TX in-
terrupts are processed by another core by setting the interrupt
mask to that core. All processes are run on the same socket.

Experimental Results

Table 2 shows the results for the [40E NIC with 64 byte pack-
ets. As can be seen, ZC is between 20x to 40x faster than V2
and V3 for the micro-benchmarks. This is a significant im-
provement that we believe should translate to a sizeable per-
formance increase in real life workloads. An indication of
this can be seen with tcpdump, as the performance increase

with ZC is a good 20x compared to V2 and V3, though tcp-
dump only has an RX component. By comparing V2 and V3
with V4 in copy-mode, we focus more on just the user space
interfaces. These results show more of a mixed bag for 64
byte packets. For RX, V4 is slightly better, but for the micro-
benchmarks with a TX component, V3 is better. The reason
for this is that the current implementation of the data path of
V4 in copy mode takes one more lock than V3 and V2. In
order to get to the same performance as V3 in these bench-
marks, we need to optimize away this extra lock in some way.
This is future work.

Benchmark | V2 | V3 | V4 | V4+7ZC
rxdrop 0.67 | 0.73 | 0.74 33.7
txpush 0.98 | 0.98 | 0.91 19.6
12fwd 0.66 | 0.71 | 0.67 15.5

tcpdump - 0.74 | 0.74 14.1

Table 2: The results of the [40E NIC benchmark runs in Mpps
for 64 byte packets.

But when we take a look at the results for larger packets
(1500 bytes) in Table 3, V4 is always better than V2 and V3
even in copy mode. The reason for this is that V4 does not
need to copy any packet data from the RX descriptor ring to
the TX one as all packets are in the packet buffer. To send
a packet that was received, only the id of the packet has to
be written into the TX descriptor ring. With V2 and V3, the
whole packet has to be copied. V4 in copy mode is between
10% to 15% faster than V2 and V3 in copy mode. For ZC,
we reach 40 Gbit/s line rate for rxdrop and tcpdump but some-
what less for txpush and 12fwd.

Benchmark | V2 V3 V4 | V4 +Z7C
rxdrop 0.56 | 0.58 | 0.66 3.3
txpush 0.81 | 0.81 | 0.88 3.1
12fwd 0.55 | 0.56 | 0.62 2.9

tcpdump - 0.62 | 0.64 3.3

Table 3: The results of the I40E NIC benchmark runs in Mpps
for 1500 byte packets.

The results for veth can be seen in Table 4 and here ZC of-
fers a performance increase compared to V2 and V3 by up to
8 times. But with V4 in copy mode we get less than half the
performance of V2 and V3, so what is happening here? By
running perf on the system, we have seen that the two pro-
cesses involved in the application are not doing much at all in
V4. They are just spinning on the flag in the data structure to
check if there is a new packet for it. And this kind of spinning
when one of the entities has much less to do than the other,
is detrimental to the performance of the ring structure we are
using. By implementing some rudimentary, hackish back off,
we have seen that the performance gets in line with or bet-
ter than V2 and V3. It seems people have already discovered
this and Michael Tsirkin has sent out a proposal to improve
the ring structure [13] that we should include to improve the
situation. There might be other problems lurking here also.
More examination is needed.

Benchmark | V2 V3 V4 | V4d+ZC
12fwd-1 0.65 | 0.76 | 0.32 0.90
12fwd-64 0.85 | 0.93 | 0.65 5.6

Table 4: The results of the veth benchmark runs in Mpps for
64 byte packets. 12fwd-1 refers to one packet being ping-
ponged and 12fwd-64 is with 64 packets.

Overall for the micro-benchmarks and tcpdump, ZC can
be up to 40 times faster than V2 and V3, which we think
is a quite significant performance increase that should hope-
fully translate into good sized boost in real life workloads
too. While V4 in copy mode is better than V2 and V3 in
many scenarios, it does lag behind in performance in some
circumstances. In the development of the code base, up until
this paper, performance optimizations have not been a focus,
but it is clear that we need some focused efforts in the data
path of V4 in copy mode as well as making the ring structure
more resilient to contention. The latter effort will likely also
boost the performance of ZC even further.

Related Work

A high-performance packet IO comparison paper by Gal-
lenmiiller et al [4] compared PF_RING, DPDK, and netmap
and came to the same conclusions as we outlined in the in-
troduction. While DPDK and PF_RING can offer higher per-
formance than netmap that uses a kernel module, the former
requires application rewriting and can crash the whole system
as it does not have a security model.

Future Work and Discussion

First and foremost is to send out an RFC for this on the mail-
ing list that is hopefully followed by a proper patch set. The
only thing we can promise is that after review on the mailing
list, things will not look exactly like the code presented in this
paper.

We strongly believe that XDP, with some future extensions,
can be beneficial in the context of ZC by for example do-
ing load balancing between processes when the HW cannot
do this, or the programmer would like to have a more flexi-
ble way of distributing the load. It could potentially also be
used to rewrite the descriptor format to something that is not
V4. How about having a really fast data path for virtio-net
in which an XDP program transforms the descriptors in the
packet array to virtio-net descriptors? For this we also need
the source/sink extension to packet arrays that has been dis-
cussed earlier.

We would also like to encourage companies with real ap-
plications to give V4 and ZC a try. The feedback from these
porting efforts and evaluation are invaluable. We need to
show that this brings value to real applications, not just micro-
benchmarks and tcpdump. Equally important is that other
NIC vendors make some PoC implementation of ZC in their
drivers to see if the packet array concept holds over more than
the two drivers we tried out in this paper.

Another feature that we would like to support is metadata
handling. Today’s NICs and other accelerators produce a lot

of metadata that could be used to speed up processing of the
packets. Some of this will be used by the kernel while other
metadata will only be used by user space. In the future, we
should implement support in V4 and ZC to be able to pipe
this metadata up to user space in an opaque manner, and to
use whatever metadata that makes sense in the kernel path of
ZC.

Conclusions

This paper presented AF PACKET V4 and
PACKET_ZEROCOPY (ZC) designed to offer high-
performance packet delivery to Linux user-space while still
being HW agnostic and abiding by the security and isolation
rules of Linux. The approach has been implemented as a
continuation to the popular AF_PACKET socket interface
with the addition of a new true zero-copy mode that can be
activated. This mode requires some additions to the device
driver, but we have made an effort to make this as simple as
possible to help adoption. One goal of our implementation
approach was to include XDP support in our implementation,
so if you implement support for ZC, you get XDP support
for free.

The performance evaluation shows that V4 with ZC out-
performs V2 and V3 in all cases by up to 40x, which makes
us hopeful that this increase in our micro-benchmarks will
translate into a performance increase in real life applications.
For V4 in copy-mode, the performance is more mixed which
signifies a need to start performance optimization work in that
area, something that has not been our focus yet. Overall, we
think that the approach shows a very promising performance
boost and that it can serve as a foundation to some exiting
future work in conjunction with XDP.

Acknowledgments

We would really like to thank the reviewers of the limited
distribution RFC for all their comments that have helped
improve the interfaces and the code significantly: Alexei
Starovoitov, Alexander Duyck, and Jesper Dangaard Brouer.
The internal team at Intel that has been helping out reviewing
code, writing tests, reviewing this paper and sanity check-
ing our ideas: Rami Rosen, Jeff Shaw, Ferruh Yigit, and Qi
Zhang, your participation has really helped. Thank you all
for your time. Highly appreciated.

References
[1] Deri, L. 2004. Improving passive packet capture: Beyond

device polling. In International System Administration and
Network Engineering Conference (SANE).

[2] DPDK - dataplane
http://www.dpdk.org.

[3] ExaBlaze. ExaNIC. http://exablaze.com.

[4] Gallenmiiller, S.; Emmerich, P.; Wohlfart, F.; Raumer,
D.; and Carle, G. 2015. Comparison of frameworks
for high-performance packet io. In Proceedings of the
Eleventh ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems, ANCS *15, 29-38.
IEEE Computer Society.

development kit.

[5] I40E - intel 40gb/s ethernet network adapter.
https://www.intel.com/content/www/us/en/products/network-
io/ethernet/10-25-40-gigabit-adapters.html.

[6] Libpcap and tcpdump. http://www.tcpdump.org.

[7] Odintsov, P. Capturing packets in linux at a speed of
millions of packets per second without using third party
libraries. https://kukuruku.co/post/capturing-packets-
in-linux-at-a-speed-of-millions-of-packets-per-second-
without-using-third-party-libraries/.

[8] RDMA - remote direct
http://www.rdmaconsortium.org.

memory access.

[9] Rizzo, L. 2012. netmap: A novel framework for fast
packet i/o. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), 101-112. Boston, MA: USENIX As-
sociation.

[10] Russel, R. vringfd(). https://lwn.net/Articles/276856/.
[11] SolarFlare. OpenOnload. http://openonload.org.

[12] Tsirkin, M. packed ring layout proposal
v2. https://lists.oasis-open.org/archives/virtio-
dev/201702/msg00010.html.

[13] Tsirkin, M. ptr_ring:
https://Ikml.org/lkml/2017/4/7/19.

batch ring zeroing.

