Accelerating XDP Programs Using HW-based Hints

Peter P. Waskiewicz Jr. Anjali Singhai Jain
Intel Intel
Hillsboro, OR, USA Hillsboro, OR, USA
peter.waskiewicz.jr@intel.com anjali.singhai @intel.com

Abstract

As XDP workloads continue to evolve, they are becoming
more complex. They can parse deeper into a packet to make
more complex decisions, plus they may compute more com-
plex hashing or other CPU-intensive operations to make flow-
based decisions.

This talk will focus on efforts to extend the XDP framework to
pass HW-based hints that have been computed by the underly-
ing network device. The intent is to build a framework that is
vendor agnostic, so XDP programs don’t need to comprehend
the underlying device they’re running against.

Finally, this talk will propose different directions for the
changes in XDP, along with the proposed additional metadata
structures. It will also show benchmarks of certain XDP work-
loads with and without HW-based hints, highlighting the ben-
efits of using these existing offloads.

Keywords
networking, kernel, ebpf, xdp, offloads

Introduction

XDP has already provided a giant leap forward in perfor-
mance and efficiency for packet processing in Linux. To
continue making progress, the eBPF and XDP infrastructure
needs to start utilizing existing hardware offloads from a
network device. This will reduce computational cycles
when parsing packet headers and data, leading to more
efficient eBPF and XDP programs. This progress though
requires changes to the Linux kernel and surrounding eBPF
infrastructure.

This paper will focus on proposed changes to eBPF
and XDP for the following:

o Utilize HW-based offloads from a network device driver to
provide hints for accelerating XDP programs

e Share performance metrics from proof-of-concept patches
highlighting the acceleration benefits of using HW hints

e Propose future changes to the eBPF framework in LLVM,
clang, and the Linux kernel, to support teaching underlying
hardware which hints to provide

e Propose additional techniques to keep XDP programs
vendor-agnostic while still programming desired hints, and
then consuming the hints for acceleration

Neerav Parikh Partha Sarangam
Intel Intel
Hillsboro, OR, USA Hillsboro, OR, USA

neerav.parikh@intel.com parthasarathy.sarangam @intel.com

HW Offloaded Hints From Device Driver

Network hardware already computes a large number of
offloads today. Future network hardware, especially with
the emergence of SmartNICs [1], will provide even more in
terms of offloaded computations. Harnessing this metadata
will be crucial to allow more complex eBPF and XDP
programs to stay as performant as possible.

The rest of this paper discusses proposed changes to
the XDP core that are built on patches from Daniel Borkman
[2], adding a metadata section to the existing xdp-buff
structure in the Linux kernel. Prior to these patches, an
xdp-_buf £ consisted of the following:

struct xdp-buff {
void =xdata;
void =*data.end;

void xdata-hard_start;

}
After the patches, the structure now looks like this:

struct xdpbuff {
void xdata;
void xdata-end;
void xdata-hard_start;

void xdata.meta;

}
&
&
& 2
< & S
2 ¢ $ ¢
> s
& & &

= %)

S =

5 T Packet data

3 =

T I

Figure 1: xdp_buff layout with metadata



The new xdp_buff field, "datameta", can be used
to point at opaque data sitting inside the headroom in the
xdp_buf £ memory, prior to the DMA’d packet buffer. Refer-
ring to Figure 1, this headroom can then be parsed using pro-
posed eBPF helper functions to extract the HW-based hints
from the driver. These hints can then be used in the business
logic of the XDP programs.

Initial Performance Gains

Initial performance gains are very promising using HW-based
hints. In benchmarks with proof-of-concept patches, where
hints are memcpy () ’d from the Rx descriptor into the XDP
buffer headroom, two XDP programs were used to demon-
strate the gains.

The system under test (SUT) was an Intel Xeon E5-2697
v2 (Ivy Bridge), using an Intel XXV710 NIC running at
25GbE. The driver on the NIC was i40e, version 2.1.14-k,
with a Linux kernel version of 4.14.0-rc1+, based on a net-
next snapshot with the xdp_buf f->data_meta field merged.

Two programs, XDP3 and XDP_HINTS, were written to
demonstrate the usage of hints. This is compared to the in-
kernel XDP1 sample program, designed to parse the packet
headers and then drop all traffic. XDP3 is a copy of XDPI,
however it performs no parsing at all. This is to demonstrate
the smallest XDP program to take a packet and immediately
drop it. XDP_HINTS is a modified version of XDP1, where
instead of parsing packet data, it consumes metadata from the
xdp-buff provided by the base driver, and then drops the
packet. In other words, it performs no packet parsing, but just
makes decisions based off metadata.

Data in Figure 2 was collected on an Ivy Bridge-class Xeon
platform as the target machine. As seen in the chart, XDP1
with JIT runs at approximately 7.3 million packets/second.
XDP3, with no packet parsing but with JIT, runs at approxi-
mately 22 million packets/second. XDP_HINTS, which per-
forms no packet parsing, but uses the HW-provided hints in
the XDP metadata, also runs at 22 million packets/second.
From this data with simple programs, we can see that remov-
ing the packet parsing to make a drop decision yields almost
3x in performance of XDP drop using HW-provided hints.

How this metadata is expressed in the xdp_buff is some-
thing the community will need to agree on moving forward.
The next sections propose various approaches in how to ex-
press and consume this metadata, along with recommenda-
tions for each approach.

Implementation Approach 1: Common Metadata
Structure

The most obvious approach to passing metadata through the
xdp_buff is to have a kernel structure that is defined to carry
the data itself. This would be something each network driver
would need to implement to translate HW offloads into the
structure. While this would provide a vendor-agnostic solu-
tion to represent data, it imposes ABI restrictions to the XDP
metadata core. Vendors would need to agree on this structure,
and then this would become part of the UAPI, which means
it cannot change once it is established, aside from additions.
This rigidity of the interface, plus trying to have all vendors

25000000
20000000
15000000
10000000

5000000

0 .

B XDP1 (10, no JIT)
XOPL(10, IT)

packets ks
XDP3(1Q, no JIT)
| XDP3 (10, JIT)

XDP_HINTS (1Q, no JIT)
® XDP_HINTS(1Q, JIT)

Figure 2: XDP With and Without HW Hints

agree on a common structure to express specific hardware be-
haviors, is not a model believed to be sustainable moving for-
ward.

Implementation Approach 2: Vendor Logic in eBPF
Libraries

A different approach of processing metadata passed from a
driver to the XDP core is to provide vendor-specific helper
functions in the eBPF libraries in userspace. In this approach,
a helper function such as bpf_get_hints () could then de-
rive the underlying hardware, and call the vendor-specific
hints-retrieval helper function. The main advantage to this
approach is no kernel-level ABI is imposed through UAPI,
so each vendor controls how the metadata is packed into the
xdp-buff. This approach can also provide a software fall-
back mechanism, in the case the underlying hardware doesn’t
provide the requested hints.

However, the disadvantage to this approach is it requires
eBPF and XDP programs to have knowledge of the underly-
ing hardware they’re running on. This introduces a require-
ment on XDP and eBPF that hasn’t existed previously, where
the program models avoided knowing or relying on specific
hardware to operate.

Implementation Approach 3: Chained XDP
Programs With Helper Functions

Another approach to process metadata from the driver to the
XDP core is to chain multiple XDP programs together. The
first XDP program would be attached either to the whole de-
vice driver, or to a specific Rx queue (see section Express
Hints via eBPF Sections). As seen in Figure 3, this ini-
tial XDP program would have the device-specific knowledge
to translate the metadata passed through the XDP headroom
from the driver. Acting as a shim program, it would then
call the larger XDP program where the business logic re-
sides. However, the larger XDP program would not require
any device-specific knowledge, and would use new eBPF
helper functions to extract the processed metadata from the
first XDP program.

This approach is still under investigation as a viable solu-
tion as of the writing of this paper. Open items needing design
are:



Driver
T Q (5]
=1 = p
) (5] [}
=] = p=]
o o o
> > >
24 o 14
» 4
Shim XDP Shim XDP
bpf 1 bpf 8
Jump Table ﬂ Jump Table ﬂ
bpf 7 bpf 9
h |

Business-logic
XDP program

Figure 3: Chained XDP Programs

e The dynamic updating of a jump table if a user wishes to
update the business-logic XDP program downstream of the
shim XDP program

e Defining what all of the helpers would be (e.g.
bpf_get_rxhash (), bfp_get_ptype (), etc.)

e Defining how the data from the shim XDP progam would
be presented to the downstream XDP program

e Measure the performance impact of chaining programs to-
gether for XDP, versus running all in one contained eBPF
program

As these items are developed and tested, our intent is to pro-
vide these patches for RFC to the upstream community.

Dynamic Programming of HW Hints

As SmartNICs become more available and flexible, having a
robust and flexible mechanism to program them is crucial.
Today, some offloads and flow match actions can be pro-
grammed using tc and/or devlink. However, these mecha-
nisms currently do not have queue-level granularity to pro-
gram a flow, nor do they currently have mechanisms to attach
an eBPF program to consume the HW hints being requested.
While the support for this can be added to these existing tools
over time as SmartNICs continue to mature, we believe that
also expressing the HW hints that would be most useful to
XDP and broader eBPF programs should be expressed as part
of the eBPF program itself.

Using tc

The fc framework has had hardware-offload support added
over the past few years. These mechanisms can be expressed
via tc-flower for known fields in a flow, or fc-u32 for unnamed
offsets within a flow. These can be utilized to program an un-
derlying Rx pipeline in hardware to match fields in flows, and
then provide the HW hints that can be utilized by the attached
eBPF/XDP programs. However, there are two areas requiring
investigation to provide the flexibility that will be needed to
fully utilize the SmartNICs.

A SmartNIC may have the flexibility to aggregate Rx
queues into groups, or even into single queues, with various
offloads. Consider Receive-Side Scaling (RSS), where one
may wish to have separate RSS domains for different queue
groups, based on different match criteria. For example, if one
flow is a tunneled 6-in-4 flow (IPv6 inside IPv4), one may
wish to match that flow signature in hardware, and direct it
to a specific set of RSS queues for further offloading/hashing.
However, if another flow is identified as a non-tunneled IPv6
flow, one may wish to match that flow signature in a different
set of RSS queues for further processing. In order to utilize tc
for this level of granularity, the framework will need to com-
prehend how to program a single queue in the Rx pipeline, or
a set of queues in that same pipeline, while programming the
match criteria within fc-flower or tc-u32. This capability does
not exist today in the current fc framework.

As SmartNICs evolve over time, new match criteria with
new hints or new actions to take on filter hits will be added
to devices. For fc to comprehend these new hints and/or ac-
tions, kernel changes will be required to add support for these
new hints and actions. This will cause adoption of new hints
and actions with SmartNIC updates to be delayed in the field,
which may not be desirable to end users and customers want-
ing to fully utilize their SmartNICs. A more dynamic solution
not requiring kernel changes may be desirable.

The next step past programming the underlying Rx
pipeline to generate match criteria and resulting metadata
is how to utilize it within an attached eBPF/XDP program.
While programming the Rx pipeline can help manage the of-
floads and flow segragation across the Rx queues, the pro-
vided metadata needs to be expressed in such a way that the
underlying XDP programs can understand and parse. Since
this mechanism of programming the Rx pipeline using fc is
completely separate and disjoint from the actual eBPF pro-
grams running against the device, coordination between these
two layers may be very difficult. In addition, when the XDP
core and framework is evolved to utilize an XDP program
per-Rx queue, programming this Rx pipeline per-queue, or
per-queue group, can become quite messy to coordinate with
which XDP program will be running on which queues. This
issue of coordination is dealt with using an alternate approach
in the next section.

Express Hints via eBPF Sections

An alternate approach this paper proposes for programming
the Rx pipeline for HW-based hint extraction is to express
the desired hints via new eBPF program sections. These
would be part of the eBPF program itself that is loading
against a device, queue group, or queue, and would provide



the necessary information to a device driver to program
the pipelines. This would also have the direct benefit that
the eBPF program that is programming the Rx pipeline
has direct knowledge of which HW-based hints should be
coming across from the underlying driver.

A goal of this approach should also be to keep this
interface as vendor-agnostic as possible. In other words,
the hints themselves could start with a known base set of
desirable hints (more on this below), allowing an eBPF
program to load on any hardware. This would provide the
ability for software to still compute a hint that is needed
for the eBPF/XDP program’s execution, but the underlying
hardware isn’t capable of providing that specific hint. This
would be a software-fallback mode. This part of the proposal
is still in its infancy as of the writing of this paper.

Another approach to keep the business logic of the eBPF
program vendor-agnostic, while providing the pipeline
programming via eBPF, is to utilize the previously described
HW-hints implementation proposal, Chained XDP Programs
With Helper Functions. This approach would allow any
hardware-specific logic potentially required for Rx pipeline
programming to be contained in the shim XDP program, and
then that program would also know exactly which hints to
extract and send to the business-logic XDP program.

The following examples are proposals of what the new
eBPF sections would look like:

Example 1: RSS hash definition and extraction:

struct bpf_hw_hints.def SEC("hw-hints") rx_hash = {
.type = RSS_HASH,
.size = sizeof (--u32),
/* It may be a good idea to also specify in some form
* the fields that should be used for computing
* the hash.
* Example:
*/
.fields = { INNER.-L3_SRC, INNER_L4_SRC},
.mask = {0x00ffff, Oxffff},
.key = {xy2123},

Inner-most L3 src addr and L4 src port

}i

Example 2: Packet-type identification and extraction:

/* PTYPE values should be agreed upon between the
* SW and the HW providing the hints. The driver
* may have to do the translation between the two.
*/
struct bpf_hw_hints.def SEC("hw_hints") rx_ptype = {
.type = PTYPE,
.size = sizeof (_..ul6),

}i

Example 3: Packet match resulting in action or map offload:

struct bpf_hw_hints.def SEC ("hw.-hints") rx.match = {
.type = PACKET.MATCH,
.fields = {PTYPE, INNER.L3.SRC, INNER.L4_SRC},

.mask = {Oxff, 0.0.ff.ff, Oxffff},

.value = {0x10, 10.10.20.2, 65},

/+ This hint adds a match rule into HW, which creates a
* SW-defined result when HW finds a match

x/

.result = 25,

.size = sizeof (..u32),

}i

Figure 4 is a table of proposed well-known hints to
program and utilize in eBPF programs to consider.

Type of HW hint | Field Size Description

Packet Type ul6 A unique numeric value that identifies an ordered
chain of headers that were discovered by the HW

in a given packet.

Header Offset ul6 Location of the start of a particular header in a

given packet. Example: start of inner-most L3

header.

Extracted variable | Example: Inner-most IPv6 address.

Field value

Match u32 Match a packet on certain fields and their values.
Provide a SW marker as a hint if the packet
matches the rule.

Checksum u32 Total packet checksum

Packet Hash u32 Hash value calculated over specified fields and a

given key for a given packet type.

Figure 4: Proposed HW-Based Hints

In order for this eBPF-based Rx pipeline programming
to work, it would need to touch the entire eBPF toolchain.
LLVM/clang would need to know how to lay out the new
ELF sections, and then the kernel verifier and loader would
need to understand how to pull these ELF sections out of the
main program. A new .ndo_ops field may need to be added
for the eBPF loader to call a network driver to load the Rx
pipeline sections, however this is still under discussion as of
the writing of this paper. Once the basic concepts are agreed
upon for the general direction, RFC patches will be provided
to the Linux Netdev community.

Conclusion

As XDP programs become more and more complex with
packet processing and parsing, the natural direction is to
utilize as many offloads to maximize efficiency and perfor-
mance. And with network hardware becoming smarter and
more flexible, these offloads and their programmability will
fit the needs of XDP’s evolution towards this goal. However,
the expression of the hints from hardware, and programming
of the underlying hardware to present the hints, is something
the Linux kernel network community will need to work to-
gether on to best design a sustainable and scalable model.



Acknowledgments

We would like to acknowledge the NetDev 2.2 selection com-
mittee for inviting us to submit and present this paper.

References

[1] Nick Tausanovitch 2016. SmartNICs:
Give your OpenStack network a boost
https://www.infoworld.com/article/3125022/networking/smartnics-
give-your-openstack-network-a-boost.html

[2] Daniel = Borkmann 2017. bpf:
add meta pointer for direct access.
https://www.spinics.net/lists/netdev/msg456525.html

Author Biographies

Peter Waskiewicz Jr (PJ) is a Senior Linux Kernel Engineer
in the Networking Division of Intel’s Communications
Group. He has maintained and helped create the igb, ixgbe,
and i40e wired Ethernet network drivers, the initial Tx
multiqueue support in the Linux kernel network stack, and
added Data Center Bridging support to the Linux kernel. He
also worked in Intel’s Open Source Technology Center on the
x86 kernel tree, enabling advanced features in the Broadwell
and Skylake microarchitectures. Prior to returning to Intel, PJ
was a Principal Engineer at NetApp in the SolidFire division,
where he was the chief Linux kernel and networking architect
for the SolidFire scale-out cloud storage platform.

Anjali Singhai Jain is a Software Architect at Intel’s
Networking Division. Having worked exclusively in Net-
working for the past 13 years at Intel, she has seen and
contributed towards many generations of Network software
Architecture, software implementation, and design of Net-
work Hardware devices. Currently she focuses her work at
Intel in defining next-generation silicon features and software
programming models.

Neerav Parikh is a Software Architect with Intel’s Con-
nectivity Group focusing on Ethernet Networking Software.
He has worked on Intel’s ixgbe and i40e Linux device
drivers, focusing on features related to FCoE, DCB, and
QoS. Prior to joining Intel, Neerav worked as a Technical
Architect enabling SAS/SATA/FC-based Storage software
products.

Partha Sarangam is a Senior Principal Engineer at Intel.
He has been the lead SW Product Architect for most of
the major Ethernet Controllers Intel has brought to the
market in the last decade. Currently, Partha is the Chief
SW Architect for Intel’s future Ethernet Controllers. Partha
has extensive SW development experience ranging from
application software to device driver development.



