

TLS Offload to Network Devices - Rx Offload

Boris Pismenny, Ilya Lesokhin, Liran Liss

Mellanox

Yokneam, Israel

{borisp, ilyal, liranl}@mellanox.com

Abstract

Encrypted Internet traffic is becoming the norm, spearheaded by

the use Transport Layer Socket (TLS) to secure TCP connections.

This trend introduces a great challenge to data center servers, as

the symmetric encryption and authentication of TLS records adds

significant CPU overhead. New CPU capabilities, such as the x86

AES-NI instruction set, alleviate the problem, yet encryption

overhead remains high. Alternatively, cryptographic accelerators

require dedicated hardware, consume significant memory band-

width, and increase latency. We propose to offload TLS symmet-

ric crypto processing to the network device. Our solution does not

require a TCP Offload Engine (TOE). Rather, crypto processing

is moved to a kernel TLS module (kTLS [5, 6]), which may lever-

age inline TLS acceleration offered by network devices. Trans-

mitted packets of offloaded TLS connections pass through the

stack unencrypted, and are processed on the fly by the device.

Similarly, received packets are decrypted by the device before be-

ing handed off to the stack. We will describe the roles and re-

quirements of the kTLS module, specify the device offload APIs,

and detail the TLS processing flows. Finally, we will demonstrate

the potential performance benefits of network device TLS of-

floads.

Keywords

TLS Offload, Rx Offload, Network Devices, TLS, Crypto,

TCP.

 Introduction

In today’s networks, Transport Layer Security (TLS) is
widely used to securely connect endpoints both inside data
centers [1] and on the internet. TLS encrypts, decrypts, and
authenticates its data, but these operations incur a significant
overhead on the server.
Fixed function hardware accelerators are known to give

improved performance and greater power-efficiency when

compared to running a software implementation on a

general purpose CPU. Cryptographic operation such as

those used in TLS are very suitable for such hardware

accelerators but they are not widely used in the context of

networking. We believe that the reason is that the offload

model is not good enough.

Existing solutions fall into four categories:

 TLS Proxy – A middlebox [2] is used to de-

crypt/encrypt all incoming/outgoing traffic. The

middlebox is running a TCP connection against

trusted machines and a TLS connection against

untrusted machines, reducing the load on the

trusted machine. However, if applied inside the

data center, some traffic remains unprotected.

 TOE – TCP offload engines have been around for

a while [3]. A TOE could run a full TLS offload as

well reducing PCI traffic and freeing CPU cycles

even further. However, the TCP stack of TOE de-

vices is inflexible, hard to debug and fix when

compared to a software TCP implementation.

Moreover, with full TLS offload, security vulnera-

bilities could remain unfixed for a long time.

 Crypto offload PCIe card – A dedicated PCIe

card to accelerate cryptographic operations, such

as [4]. In the case of a PCIe card performing en-

cryption/decryption operation, the data is sent to-

wards the card over PCIe. It is then modified and

sent back for further processing. This solution

trades computational overhead for higher stress on

the memory subsystem, leaving less memory

bandwidth for other tasks, while also consuming

more power.

 TLS in the kernel – Kernel TLS [5, 6] is kernel

module for performing the bulk symmetric en-

cryption of TLS records by the kernel instead of

using a user space library. It facilities using send-

file for TLS connections. Moreover, where previ-

ously data was copied once during encryption and

once again to be sent by TCP, using this approach

encryption and data copy from user-space to the

kernel become a single operation. This approach

can leverage the x86 AES-NI instruction set for

accelerating AES operations.

Motivation

In our previous paper we presented the transmit path
offload. We use Iperf with OpenSSL support to show the
speedup obtained by using this offload. Our setup consists
of two Xeon E5-2620 v3 machines connected back-to-back
with Innova-TLS NICs (ConnectX4-Lx + Xilinx FPGA).
We show the speedup gained by the transmitting machine in
terms of throughput per CPU cycle using TLS1.2 and the
AES-GCM-256 ciphersuite. We compare the following:

- openssl version 1.0.1e with no offload
- openssl version 1.0.1e with offload support but

using the OpenSSL read/write API
- tls syscall which uses OpenSSL for the TLS

handshake and then calls the kernel’s TLS
read/write system calls directly

- tcp as an upper bound for potential speedup
We use the bandwidth/cycles measurement because for all
models the bottleneck is the receive side packet processing.
In this work, we offload the crypto receive side processing.
Using this offload improves end-to-end bandwidth with
TLS.

Model and Software Stack

In this paper, we propose a model and a software stack (see
Figure 2) where the payload of network packets is
transformed in-place by the network device. This model

retains all the benefits of using a robust software network
stack while offloading the crypto data crunching to the
device. Since the data needs to reach the network device
regardless of the offload. This model doesn’t add any
memory traffic or IO.

We focus on the AES-GCM ciphersuite, and the TLS1.2
protcol. It is possible to extend this model to other
ciphersuites and TLS1.3 with some additional effort.
 In the proposed model, the keys used by the TLS layer are
offloaded to the NIC to which the connected socket is
routed. The socket is marked as offloaded. From this
moment onward packets of this TCP socket will be
opportunistically decrypted by the device.
Upon receiving a packet, the device identifies it for offload
according to the 5-tuple and TCP sequence number. The
NIC will offload matching packets producing packets with
the same headers, while replacing the payload with
plaintext. Out of order packets are not processed by
hardware and these are unmodified by hardware. Plaintext
or ciphertext indication is maintained per SKB and the
software stack must prevent coalescing of plaintext and
ciphertext SKBs. TCP congestion control, memory
management, retransmission, and other enhancements
remain unchanged. Finally, the TLS layer does the required
crypto operation to make sure the user gets authenticated
plaintext. Typically the entire record is received as plaintext
and already authenticated by the HW, so no cryptographic
operation needs to be performed.

5.42668863
3

3.05121079
8 2.64153969

5

1

64

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Record Size

Sp
ee

d
u

p

Bandwidth/Cycles normalized
to OpenSSLL

tcp tls syscall openssl+offload openssl

Figure 1. Speedup in terms of bandwidth per CPU cycle.

Normalized to OpenSSL version 1.0.1e. Offload provides

rovement for maximum sized records (16K) on the transmitting

machine.

Figure 2. Kernel software stack for TLS offload for the fastpath

flow. The NIC decrypts incoming TCP segments that carry TLS

ciphertext. These packets go through the normal TCP/IP to the TLS

layer where the TLS records are removed, but no crypto processing

is required.

TLS Rx Offload Challenges

When the TLS oflload is initiated, the TLS provides the

relevent TLS context to the NIC. The TLS context

including keys and IV, TCP context including the 5-tuple

and an expected sequence number, and the TLS record

sequence number are provided to the NIC. The good flow

assumes that matching TCP packets are received in-order.

The NIC will decrypt all these packets and provide an

indication to software, which could skip decryption. The

problem is with packet drops/reordering.

Upon packet drops/reordering, the NIC loses the state

required to perform additional packet offload. For example,

in TLS after reordering, the NIC might lose track of the

TLS record format and TLS record sequence numbers,

which are necessary and sufficient for inline TLS packet

processing.

If software would attempt to assign a new TLS context,

then it would need to provide the TCP sequence of the next

expected TLS record. However, software processes packets

when hardware processing future packets. As a result,

while there is traffic being received, software could not

provide the TCP sequence number of the next expected

TLS record. This is what we call the “race between

software and hardware”.

In Figure 3 we show an example of this race. Assume

records R1-4 are sent on the wire. First, packets P1-3 arrive

in one burst, and packest P4-6 arrive at a later time. While

software processes P1-3, hardware receives and processes

P4-6. Software only knows about R1 and R2, while

hardware already processed some of R3 and it knows the

location of record R4. Therefore, software does not have

sufficient information to update the state of hardware to

process the next record, e.g. R4.

Figure 3: Race condition between software and hardware. While

software is starting to process TLS record R2, hardware is already

in the middle of reading TLS record R3. Therfore, software

cannot resynchronize hardware without some hardware

assistance.

Control Path

The control path is based on an extension of the

kTLS[5][6] control plane.

In response to a user offload request, kTLS calls

tls_dev_add, a new NDO, for the netdevice used by that

socket. kTLS provides the following parameters to the

tls_dev_add NDO:
- The socket
- The crypto parameters
- The TCP sequence of the start of the next expected

TLS record to be received.
If the device can offload this TLS session, the function

returns success. From this moment onwards, any packet

received over that socket can be plaintext. The device will

track TCP sequence numbers, decrypt and authenticate all

packets received from this socket.

The sk_destruct function of the TCP socket is replaced

to free resources related to TLS in the socket layer.

Similarly, kTLS goes on to call another new NDO called

ktls_dev_del, in order to free device driver and hardware

resources.

TLS also supports key renegotiation during a session.

The renegotiation in TLS1.2 is based on an encrypted TLS

handshake where cryptographic material is exchanged.

Eventually, the change cipher spec message is sent by each

party to mark that the next packet will be encrypted using

the new keys.

During renegotiation, the NIC might not identify the

CCS record type. As a result a single record after the CCS,

which is encrypted using the new key, is decrypted using

the old key and its authentication check fails. We fix this in

kTLS when new keys are added by the userspace handling

the renegotation. kTLS will remove the old offload and go

over all socket buffers of the TLS record after CCS in the

receive queue reversing decryption offload.

Data Path

Each SKB that participates in Rx TLS offload must

provide two additional bits of metadata to the kTLS layer:
- tls_processed: Was this packet processed by the

TLS accelerator?
- tls_success: Was this packet processed

successfully?
Packets with mismatching metadata bits must not be

coalesced at any layer except kTLS.

The data path consists of a fast path and a slow path. In the

fast path all packet are decrypted by hardware, and

decryption is skipped entirely.

The following pseudo code is performed by the kTLS layer

for each record received:
1. Initialize:

a. partial_decrypt = 0; resync = 1;
2. Go over all socket buffers in the TLS record:

a. If skb is not tls_processed:
i. partial_decrypt = 1;

b. If skb is tls_processed and not
tls_success:

i. Return authentication error.
c. If skb is tls_processed and tls_success:

i. resync = 0;
3. Else If resync: //fully encrypted record received

a. Call dev->tls_rx_resync(..)
b. tls_sw_decrypt_and_auth_record(..)

4. Else If partial_decrypt: // Mixed plaintext and
ciphertext

a. tls_partial_decrypt_and_auth(..)
5. Copy plaintext to userspace.

Resynchronization
 When the TLS offload accelerator experiences significant
out-of-order it might lose the TLS record framing inside the
TCP stream. This will prevent further offload until the
context is resynchronized (resync). The kTLS layer could
identify this by receiving a fully encrypted TLS record
header while using TLS Rx crypto offload. Resync requires
software to provide hardware with a new expected TCP
sequence number of a TLS record and the corresponding
TLS record sequence number.

 Partial Decrypt

 Due to reordering some packets are unmodified while
others are decrypted. As a result, kTLS must validate the
authentication and decrypt TLS records that consist of some
ciphertext and some plaintext packets.

In AES-GCM we need to obtain the ciphertext to
authenticate the record. We do this by encrypting the
payload of each decrypted packet. AES-GCM encryption is
performed via a XOR of the data with the keystream, which
is generated using a counter starting from the TLS record IV.
The ciphertext is processed by the GMAC algorithm to
produce the ICV which is compared to the authentication tag
on the wire. Also, packets that are received encrypted need
to be decrypted to get a plaintext TLS record. Overall, this
partial decryption operation requires only a single pass over
the TLS record, because each packet is XORed with the
keystream once to get either the ciphertext or the plaintext,
and all the ciphertext goes through the GMAC algorithm.

In Figure 5, we show and example of a TLS record that
consists of 4 packets. The ciphertext and plaintext packets
are interleaved. Partial decryption will authenticate and
decrypt the record in a single pass over the data.

Note1: The authentication tag on the wire is never modified.

Note2: We fallback to software decryption when the entire
record is ciphertext.

Note3: These ideas can be adjusted to CBC with some
modifications.

SKB Coalescing
 SKBs with mismatching tls_processed/tls_success bits
cannot be merged. This might be a problem when TCP
attempts to prune its receive queues. A possible solution is
to call kTLS to perform partial decryption on these SKBs.
After partial decryption these bits could be reset and SKBs
could be coalesced.

Conclusion

We suggest a kernel API for TLS receive side offload, and

provide an initial performance evaluation. TLS offload

improves performance by at least 3x over current state-of-

the-art kernel implementation, reducing per packet CPU

overhead and enabling the use of encryption in high

throughput. Receive-side crypto offload will improve the

throughput of TLS connections. Further improvements

gained by receive side offload is yet to be evaluated.

References
1. “The Fully Encrypted Data Center”, Oracle Technical
White Paper, accessed September 22, 2016,
http://www.oracle.com/technetwork/server-
storage/hardware-solutions/fully-encrypted-datacenter-
2715841.pdf

2. “Server Farm Security in the Business Ready Data
Center Architecture”, Cisco design guide, Chapter 6
“Catalyst SSL Services Module Deployment in the Data
Center with Back-End Encryption”
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/
Data_Center/ServerFarmSec_2-
1/ServSecDC/DC_Pref.html

3. “Why TOE is bad?”, accessed September 22, 2016.
https://wiki.linuxfoundation.org/networking/toe

4. “Intel QuickAssist”, accessed September 22, 2016.
http://www.intel.com/content/dam/www/public/us/en/doc-

uments/product-briefs/quickassist-adapter-8950-brief.pdf

5. Optimizing TLS for “High-Bandwidth” Applications in
FreeBSD, R. Stewart, et. al. accessed September 22, 2016.
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

Figure 5: Partial decryption of a TLS record which consists of

plaintext and ciphertext packets. Both ciphertext and plaintext is

obtained. The former is used for authentication and the latter is

provided to the user.

http://www.oracle.com/technetwork/server-storage/hardware-solutions/fully-encrypted-datacenter-2715841.pdf
http://www.oracle.com/technetwork/server-storage/hardware-solutions/fully-encrypted-datacenter-2715841.pdf
http://www.oracle.com/technetwork/server-storage/hardware-solutions/fully-encrypted-datacenter-2715841.pdf
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/ServerFarmSec_2-1/ServSecDC/DC_Pref.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/ServerFarmSec_2-1/ServSecDC/DC_Pref.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/ServerFarmSec_2-1/ServSecDC/DC_Pref.html
https://wiki.linuxfoundation.org/networking/toe
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

6. Crypto Kernel TLS socket, D. Watson, accessed
September 22, 2016.
https://lwn.net/Articles/665602/

7. RFC 4303: IP Encapsulation Security Payload (ESP), S.
Kent, accessed November 1, 2016,
https://www.ietf.org/rfc/rfc4303.txt

8. QUIC: A UDP-Based Secure and Reliable Transport for
HTTP/2 draft-hamilton-early-deployment-quic-00, J.
Iyengar, et. al. accessed November 1, 2016.
https://tools.ietf.org/html/draft-hamilton-early-deployment-
quic-00

9. RFC 6347: Datagram Transport Layer Security Version
1.2, E. Rescorla, accessed November 1, 2016.
https://tools.ietf.org/html/rfc6347

10. TLS Offload to Network Devices, B. Pismenny, et. al.,
accessed October 19, 2017.
https://www.netdevconf.org/1.2/papers/netdevconf-
TLS.pdf

https://lwn.net/Articles/665602/
https://www.ietf.org/rfc/rfc4303.txt
https://tools.ietf.org/html/draft-hamilton-early-deployment-quic-00
https://tools.ietf.org/html/draft-hamilton-early-deployment-quic-00
https://tools.ietf.org/html/rfc6347

