
Extend TC to support Connection Tracking

Guy Shattah, Rony Efraim
Mellanox, Ra’anana, Israel

[sguy | ronye] at mellanox.com

Abstract
Recent industry movement towards the use of TC as well as Open

vSwitch (OVS) has created new requirements, one of which is sup-

porting connection tracking (CT).

OVS data-path already uses rules to deliver the packet to CT and

rules to act according to CT State.

TC should also be extended to support rules according to CT State.

In this paper, we would like to present a suggestion on how TC

API should be extended in order to use CT as an action and the

ability to classify on connection state.

Keywords
Virtualization, switchdev, TC, filters, Open vSwitch, Software

Defined Networking, connection tracking

Introduction

Connection tracking

Stateful traffic filters allow finer-grained traffic analysis

which provide richer information that allows sysadmins and

security experts to define more intelligent policies. Linux

Netfilter Connection Tracking provides such state seman-

tics. The connection tracking subsystem stores information

about the state of a connection in a memory structure that

contains the source and destination IP addresses, port num-

ber pairs, pro- tocol types, state, and timeout. With this extra

information, more intelligent filtering policies can be de-

fined.[1]

Open vSswitch

OVS (Open Virtual Switch) is one of the dominant virtual

switches, it is capable of switching frames between local

VMs on the host (sometimes called east-west traffic) and

between local VMs and remote VMs (sometimes called

north-south traffic). One major difference between OVS and

a “regular” IEEE Ethernet bridge is that the OVS switch

“flows” as oppose to a regular Ethernet bridge which pro-

vides frame delivery between VMs based on MAC/VLAN.

[2]

OpenFlow is a communications protocol that gives access

to the forwarding plane of a network switch or router over

the network. It enables network controllers to determine the

path of network packets across a network of switches, while

the controllers are distinct from the switches. [3]

OVS supports making decisions based on connection track-

ing by using OpenFlow Commands

table=0,priority=100,ip,ct_state=-trk,action=ct(table=1)

table=1,in_port=1,ip,ct_state=+trk+new,action=ct(commit),2

table=1,in_port=1,ip,ct_state=+trk+est,action=2

table=1,in_port=2,ip,ct_state=+trk+new,action=drop

table=1,in_port=2,ip,ct_state=+trk+est,action=1

It start at table 0, any incoming IP packet with missing con-

nection state data (ct_state = - trk) is sent to connection-

tracking and from there to table: 1. Where packets from port

1 (in_port = 1) are tested for connection-state. The tracked

ones (+trk) which are part of a new connection (+new) are

being committed (commit) and output to port 2. Tracked

ones (+trk) which are part of established connection (+est)

are sent directly to port 2. Packets from port2 that are

tracked (+trk) which are part of a new connection (+new)

are dropped, and the established connection (+est) are sent

directly to port 1.

TC

TC is Linux Traffic Control mechanism that includes the

sets of queuing systems and mechanisms by which packets

are received (via Ingress port) and transmitted (via Egress

port) on a router. [4]

Classifiers/Filters are selectors of packets in TC. They

stare at either packet data or meta-data and select an action

to execute. Each classifier type implements its own algo-

rithm and is specialized. A classifier contains filters which

implement semantics applicable to the classifier algorithm.

For each policy defined, there is a built in filter which

matches first based on the layer 2 protocol type. Actions are

executed when a resulting classifier filter matches. [5]

While other classifiers could be used, The goal of this paper

is to focus on extending the flower classifier.

The flower classifier was written by Jiří Pírko and makes

use of several "commodity" kernel features. As a packet

traverses the stack, the flow it uses is cached. Flower then

stores the flow in a rhashtable. Subsequent packets matching

a classifier rule can quickly be directed into the correct flow

by retrieving the cached copy from the rhashtable. Flower

supports rules based on a subset of possible flow parameters

(source and destination address, ingress and egress ports,

MAC addresses, etc) and more. [6]

The flower classifier supports action-chaining with Multi-

table/Multi-chain: TC rules (filters) are put together into

chains in order according to priority (pref). Each chain can

be looked at as a table of rules in order to decide of an action.

An action is an order to execute when a resulting classifier

filter matches. Below is an example for a chain.

Insert a rule into specific chain:

$ tc filter add dev eth1 parent ffff: protocol ip chain 100

pref 10 flower dst_ip 192.168.101.1 action drop

Use “goto chain” action:

$ tc filter add dev eth1 parent ffff: protocol ip pref 10

flower src_ip 192.168.101.1 action goto chain 100

Tc also has the connmark action, connmark provides a way

to have a mark which is linked to a connection tracking en-

try. Despite the similar sounding name, connmark does not

act as a classifier (it is an action) nor does it allow to act

based on connection state.

Motivation
Iptables, also known as netfilter, is a command-line firewall

utility that uses policy chains to allow or block traffic. Con-

nection-tracking is a part of the netfilter subsystem. Hence

iptables is capable of making decisions whether to accept,

reject or drop packets based on the connection state. Being

a stand-alone subsystem, it is possible to easily integrate

Connection tracking as part of TC, Hence adding options

(which did not exist before) to filter traffic based on connec-

tion state.

 Recent hardware devices allow offloaded connection track-

ing. OVS, being a customer of the connection tracking sub-

system, could benefit from CT offloading. OVS is already

capable of using TC both for classification and hardware of-

fload [7]. Utilizing the same hardware to offload twice on

the very same data path would introduce a performance hit.

Hence we would like to offload it once. Offloading both TC

and CT, is possible by integrating CT inside TC thus allow-

ing TC to perform all the classification.

TC suggestion
OVS supports connection tracking by utilizing the kernel

CT module, We suggest to do the same by add CT to TC as

an action and match. New CT action, send the packet to CT,

and continue to the requested chain (table). Where a deci-

sion will be made based (not limiting to) on match the con-

nection state.

NetfilterTC

Action: CT

Classifier: ct_state
-trk

CT

Classifier:ct_state

Action:
goto chain

ActionAction

New action “ct” will be add in order to call the nf_ct.

The new ct action can have the flowing optional parameters:

 commit - commit the connection

 zone <number> - Zone number in CT to use (u16)

New match will be add to flower classifier call ct_state, to

classify the connection state. ct_state flags can be match to

be set by using “+” or clear by using “-“, all other flags will

be ignored. The flags are:

 trk - Tracked - Been through the connection tracker

 inv – Invalid

 new – new connection

 est - Established connection

 rpl - Packet is in reply direction

 rel - Related - ICMP, eg “dst_unreach” response

or helper “related” connection

Below there is example for use the TC for CT rules:

tc filter add dev eth5 protocol ip parent ffff: chain 0

 flower ct_state -trk

 action ct

 action goto chain 1

tc filter add dev eth6 protocol ip parent ffff: chain 0

 flower ct_state -trk

 action ct

 action goto chain 2

tc filter add dev eth5 protocol ip parent ffff: chain 1

 flower ct_state +trk,+est

 action mirred egress redirect dev eth6

tc filter add dev eth6 protocol ip parent ffff: chain 2

 flower ct_state +trk,+est

 action mirred egress redirect dev eth5

Conclusion

The suggested changes add connection tracking

offload to TC. Linking between TC and the exist-

ing Linux sub-system, Hence enabling improved

performance when using hardware offload.

 References
[1] Pablo Neira Ayuso, “Netfilter’s connection tracking sys-

tem”, :login; the USENIX magazine. JUNE 2006

[2] Rony Efraim, Or Gerlitz, “Using SR-IOV offloads with

Open-vSwitch and similar applications”, Proceedings of

Netdev 1.2, Feb 2017

[3] Nick McKeown; et al. (April 2008). "OpenFlow: Ena-

bling innovation in campus networks". ACM Communica-

tions Review.

[4] Martin A. Brown, “The Linux documentation project”.

http://tldp.org/HOWTO/Traffic-Control-HOWTO/over-

view.html

[5] Jamal Hadi Salim – “Linux Traffic Control Classifier-

Action Subsystem Architecture”, Proceedings of Netdev

0.1, Feb 2015

[6] Nathan Willis - “Measuring packet classifier perfor-

mance”, https://lwn.net/Articles/675056/

[7] Jiří Pírko – “Implementing Open vSwitch datapath us-

ing TC”, Proceedings of Netdev 0.1, Feb 2015

https://lwn.net/Articles/675056/

