
TCP-BPF: Programmatically tuning TCP behavior through BPF

Lawrence Brakmo

Facebook
Menlo Park, USA
brakmo@fb.com

Abstract
TCP-BPF, also known as BPF sock_ops, is a new mecha-
nism that supports setting TCP parameters through BPF
programs. In addition to the flexibility of using BPF pro-
grams to determine the optimal parameters for a TCP con-
nection, TCP-BPF also adds support for new parameters
such as SYN RTO and SYN-ACK RTO. A TCP-BPF pro-
gram can use socket information, such as IP addresses and
port numbers, for determining optimal values for TCP pa-
rameters. For example, setting buffer sizes to 80KB, SYN
and SYN-ACK RTOs to 10ms and TCP's congestion con-
trol to DCTCP when both hosts reside within the same
ECN supporting datacenter.

Keywords
BPF, TCP, Linux.

 Introduction
Linux provides global, per name-space and per-connection
parameters to fine tune TCP's behavior. Examples of these
parameters are buffer sizes, congestion control, and win-
dow clamp. Global parameters are useful for setting default
parameters, but cannot be tuned for each connection's char-
acteristics. For example, large RTT connections require
more buffer space than short RTT connections. Although
network namespaces support finer parameter granularity, it
requires that all TCP connections in a namespace have
similar characteristics in order to optimize parameter val-
ues.

Linux provides two mechanisms for setting per-connec-
tion TCP parameters: the setsockopt function and ip-route.
The first mechanism, setsockopt, requires changes to the
application, and more importantly, the naïve implementa-
tion binds the policy to the application. The second mecha-
nism, ip-route, can set the parameters based on route pre-
fixes. This is much more limited that what can be achieved
in a BPF program that has access to potentially more con-
nection information.

 Once there is a framework for programmatically setting
parameters, one starts to see many new opportunities for
parameters. SYN and SYN-ACK RTOs are prime examples

 In addition to support setting TCP parameters statically
based on initial connection information, such as IP addresses
and port numbers, TCP-BPF can also support dynamical
approaches. For example, consider the initial congestion
window (INIT_CWND). One could write a TCP-BPF
program to explore a range of INIT_CWND values in order
to arrive to per-subnet optimal INIT_CWND values. This
could be more than just a one-time experiment; the probing
and exploration could always be present (at appropriate rate)
in order to adapt to changing workloads or hardware.

 Of course, the uses of TCP-BPF go beyond its initial goal
of programmatically tuning TCP parameters. It can support
experimentation where one can try different parameter
values as well as collecting the necessary data in order to
evaluate the experiment. For example, fine tuning
INIT_CWND per IP prefix.

Overview
TCP-BPF is a new BPF program type that attaches to a
cgroupv2. As a result, it can support having different
policies for applications by running the applications in
different groups.

 Existing BPF program types follow the model that there
is a BPF program per entry (or calling) point. Thus, the BPF
program typically knows where it is being called from. In
contrast, a TCP-BPF program can be called from many
different points from within the TCP execution path. An op
value is used to indicate either where it is being called from
or what is expected from the TCP-BPF program (more on
this later). One reason for this approach is that in order to
achieve some results, the TCP-BPF program needs to
coordinate among separate calls. For example, if we want to
optimize a connection whose endpoints are within the same
DC, we need to set SYN RTO and SYN-ACK RTOs (a new
parameter introduces by TCP-BPF) to small values as well
as set small socket buffer sizes. Using separate BPF
programs would introduce the possibility that we use
programs that are not compatible with each other. In
addition, it would be a big pain having to load multiple TCP-
BPF programs.

 In addition to the op type, TCP-BPF program can also get
direct access to a subset of the socket state. Finally, there are
also the bpf helper functions getsockops and setsockops that
can be used to get and set some TCP parameters.

 As mentioned earlier, there are two types of TCP-BPF
ops. The first type requests a particular value and its effect
occurs through its return value. Examples of this type of op
are:

• BPF_SOCK_OPS_TIMEOUT_INIT
• BPF_SOCK_OPS_RWND_INIT
• BPF_SOCK_OPS_NEEDS_ECN
• BPF_SOCK_OPS_BASE_RTT

 The second type indicates where the TCP-BPF program
is being called from and its effects occur by changes to the
connection state. These changes can be achieved through
calls to setsockopt or by directly changing a socket state
value. Examples of this type of op are:

• BPF_SOCK_OPS_TCP_CONNECT_CB
• BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
• BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB

Implementation

TCP-BPF programs are implemented as a new BPF program
type that attaches to a cgroupv2. The data structure
associated with the program is called bpf_sock_ops when
seen by the TCP-BPF program and looks like:

struct bpf_sock_ops {
 __u32 op;
 union {
 __u32 reply;
 __u32 replylong[4];
 };
 __u32 family;
 __u32 remote_ip4; /* Stored in NBO */
 __u32 local_ip4; /* Stored in NBO */
 __u32 remote_ip6[4]; /* Stored in NBO */
 __u32 local_ip6[4]; /* Stored in NBO */
 __u32 remote_port; /* Stored in NBO */
 __u32 local_port; /* stored in HBO */
/* where NBO = Network Byte Order
 and HBO = Host Byte Order
 */
};

Current ops return their value through the reply field. The
replylong field is there to support future ops that may require
larger return values.

The data structure associated with the kernel is called
bpf_sock_ops_kern and looks like:

struct bpf_sock_ops_kern {
 struct sock *sk;
 u32 op;
 union {
 u32 reply;
 u32 replylong[4];

 };
};

 The fields op, reply and replylong in the bpf_sock_ops
structure are R/W and map directly to the respective fields
in the kernel structure. The other fields are Read Only and
are mapped directly by the BPF framework into direct
accesses to the respective sock structure fields.

 The function tcp_call_bpf(), defined in include/net/tcp.h ,
is used to call the TCP-BPF program. The function
declaration is:

static inline int tcp_call_bpf(struct sock *sk,
 int op);

 There are helper functions for some of the ops defined in
include/net/tcp.h

 As mentioned earlier, there are two TCP-BPF helper
functions.

• bpf_setsockopt() is similar to the standard Linux
setsockopt but only supports a limited number of
options. Among the options supported are:

o SO_RCVBUF
o SO_SNDBUF
o SO_MAX_PACING_RATE
o SO_PRIORITY
o SO_RCVLOWAT
o SO_MARK
o TCP_CONGESTION
o TCP_BPF_IW
o TCP_BPF_SNDCWND_CLAMP

Where the standard options have the same meaning
as in Linux. The two new options have the
following meanings:

TCP_BPF_IW – set initial snd_cwnd to the specified
value. If the connection has already sent packets,
then this is a nop.

TCP_BPF_SNDCWND_CLAMP – sets the socket
snd_cwnd_clamp and the snd_ssthresh to the
specified value.

• bpf_getsockopt() is similar to the standard Linux
getsockopt but currently only supports one option:

o TCP_CONGESTION

Usage

TCP_BPF uses cgroupsv2 BPF framework, so it is
necessary to create a group and attach the relevant processes
to the group. For example:

mkdir -p /tmp/cgroupv2
mount -t cgroup2 none /tmp/cgroupv2
mkdir -p /tmp/cgroupv2/foo
bash
echo $$ >> /tmp/cgroupv2/foo/cgroup.procs

Any program started with the current shell will belong the
the cgroupv2 foo. If you are using netperf/netserver or iperf3
they should be started through the current shell.

To attach a TCP-BPF program to the cgroupv2 foo, one can
use the following command:

load_sock_ops [-l] <cgroupv2> <tcp-bpf program>

For our example:

load_sock_ops -l /tmp/cgroupv2/foo tcp_iw_kern.o

tcp_iw_kern is a TCP-BPF program that only affects flows
where one of the ports is 5560 and sets TCP parameters that
are appropriate for larger RTTs: it set TCP’s initial
congestion window of active opened flows to 40, the receive
windows to 40 and send and receive buffers to 1.5MB so the
flow can achieve better throughput.

To remove/unload a TCP-BPF program

load_sock_ops -r <cgroupv2>

Example: Tuning for DC
tcp_clamp_kern is a TCP-BPF sample program to optimize
parameters for flows within a DC. The TCP-BPF program
assumes that if the first 5.5 bytes of the IPv6 address match,
then both hosts are within the same DC. In such a case, the
TCP-BPF program set the SYN and SYN-ACK RTOs to
10ms, send and receive buffers to 150KB. The actual
program is shown in Appendix A.

 To measure the benefits of fine tuning some parameters
for intra-DC traffic we had 3 hosts send to one host (see
Figure 1). Each host established X 1MB back-to-back RPC
flows plus 1 streaming flow plus 2 10KB flows, for X in {1,
2, 4, 8, 16}. Figure 2 shows the average rate of the 1MB
RPCs for baseline and using the clamp bpf program. The
average 1MB RPC rates are the about the same for baseline
and using the clamp TCP-BPF program. However, the
number of packet retransmitted is quite different. It is zero
when using the TCP-BPF program for most of the
experiments. As a result, the 99% Latencies are about half
of baseline when running the TCP-BPF program (except for
the last experiment where the retransmissions are the same
for both).

More interestingly, Figure 3 shows the rate and
retransmissions for 10KB RPCs. When using the TCP-BPF
program. The 10KB RPCs get much higher bandwidths
when running the TCP-BPF program, staring 4x the
bandwidth, as compared to baseline, when there are 12
flows.

Finally, Figure 4 shows the median an 99% latencies for the
10KB Flows. Interestingly, the 99% latencies are at least
half of baseline as long as the TCP-BPF program is able to
prevent packet losses.

Figure 2: Rate and retransmissions for 1MB RPCs

Figure 3: Rate and retransmissions for 10KB RPCs

Figure 1: Experiment scenario

The parameter mostly responsible for the improvements

is the cwnd window clamp. For this example, the TCP-BPF
program sets it to 100, large enough to allow one flow to
achieve close to 10Gbps, but small enough that allows many
concurrent flows to coexist without packet drops. The other
parameters used help with memory and the case when the
SYN or SYN-ACK packets are dropped.

 Although there are other mechanisms for setting the cwnd
clamp (setsockopt and ip-route), TCP-BPF is more
convenient because it doesn’t require any changes to the
application and the same TCP-BPF program can be used
everywhere, whereas ip-route would need different settings
in each DC.

Next Steps
There are various TCP-BPF enhancements in the pipeline.
Among them are:

1. Make more TCP state available to TCP-BPF
programs. For example cwnd, ssthresh, etc.

2. Add more functionality to bpf_setsockopt and
bpf_getsockopt. Examples: setting IPv6 class,
setting flowlabels, etc.

3. Add more entry points to TCP-BPF. For example,
when an RTO fires, when a packet is retransmitted,
when a packet is received or sent, etc. In order to
reduce overhead, there will be a bitmap (per
socket) associated with these calling points to
determine whether they should be called.
 The bitmap is initialized to zeroes, but can be set
(per flow) in the BPF program when the
connection is established. In some cases, entry
points could be enabled statistically (i.e. 0.01% of
flows) enabled to allow collection (or analysis) of
flow behavior. In many cases the RTO and
retransmits could be enabled for all flows
(assuming they are rare) and the TCP-BPF program
could trigger specific behaviors, such as changing
flow labels or congestion algorithm, when the RTO
rates or retransmits are too high.
 It would enable new behaviors, such as
dynamically, i.e. not only at connection

establishment time, tuning parameters based on the
effect on the flow. For example, adjusting the initial
congestion window per subnet based on whether it
leads to losses or not.

4. Add support for handling TCP packet header
options. The idea is to be able to implement new
TCP header options in BPF programs. This is
especially useful in environments where people
have their own local options since it decreases the
need of maintaining local patches.

Availability
TCP-BPF is available starting at kernel version 4.13

I would like to recognize the helpful feedback provided by
Alexei Starovoitov and Daniel Borkmann.

References
1. Alexei Starovoitov, BPF in-kernel Virtual

Machine, Netdev 0.1 Technical Conference,
Ottawa, Canada.
 https://netdevconf.org/0.1/docs/starovoitov-
bpf_netdev01_2015feb13.pdf

Figure 4: 50% and 99% 10KB Latencies

Appendix A
SEC("sockops")
int bpf_clamp(struct bpf_sock_ops *skops
{
 int bufsize = 150000;
 int to_init = 10;
 int clamp = 100;
 int rv = 0;
 int op;

 /* Check that both hosts are within same datacenter. For
 * this example it is the case when the first 5.5 bytes of
 * their IPv6 addresses are the same.
 */
 if (skops->family == AF_INET6 &&
 skops->local_ip6[0] == skops->remote_ip6[0] &&
 (bpf_ntohl(skops->local_ip6[1]) & 0xfff00000) ==
 (bpf_ntohl(skops->remote_ip6[1]) & 0xfff00000)) {
 switch (op) {
 case BPF_SOCK_OPS_TIMEOUT_INIT:
 rv = to_init;
 break;
 case BPF_SOCK_OPS_TCP_CONNECT_CB:
 /* Set sndbuf and rcvbuf of active connections */
 rv = bpf_setsockopt(skops, SOL_SOCKET, SO_SNDBUF,
 &bufsize, sizeof(bufsize));
 rv = rv + bpf_setsockopt(skops, SOL_SOCKET,
 SO_RCVBUF, &bufsize,
 sizeof(bufsize));
 break;
 case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:
 rv = bpf_setsockopt(skops, SOL_TCP,
 TCP_BPF_SNDCWND_CLAMP,
 &clamp, sizeof(clamp));
 break;
 case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB:
 /* Set cwnd clamp and sndbuf, rcvbuf of passive
 * connections
 */
 /* See actual program for this code */
 default:
 rv = -1;
 } else { rv = -1; }
 skops->reply = rv;
 return 1;
}

