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Abstract 
TCP-BPF, also known as BPF sock_ops, is a new mecha-
nism that supports setting TCP parameters through BPF 
programs. In addition to the flexibility of using BPF pro-
grams to determine the optimal parameters for a TCP con-
nection, TCP-BPF also adds support for new parameters 
such as SYN RTO and SYN-ACK RTO. A TCP-BPF pro-
gram can use socket information, such as IP addresses and 
port numbers, for determining optimal values for TCP pa-
rameters. For example, setting buffer sizes to 80KB, SYN 
and SYN-ACK RTOs to 10ms and TCP's congestion con-
trol to DCTCP when both hosts reside within the same 
ECN supporting datacenter. 
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 Introduction 
Linux provides global, per name-space and per-connection 
parameters to fine tune TCP's behavior. Examples of these 
parameters are buffer sizes, congestion control, and win-
dow clamp. Global parameters are useful for setting default 
parameters, but cannot be tuned for each connection's char-
acteristics. For example, large RTT connections require 
more buffer space than short RTT connections. Although 
network namespaces support finer parameter granularity, it 
requires that all TCP connections in a namespace have 
similar characteristics in order to optimize parameter val-
ues. 
 

Linux provides two mechanisms for setting per-connec-
tion TCP parameters: the setsockopt function and ip-route. 
The first mechanism, setsockopt, requires changes to the 
application, and more importantly, the naïve implementa-
tion binds the policy to the application. The second mecha-
nism, ip-route, can set the parameters based on route pre-
fixes. This is much more limited that what can be achieved 
in a BPF program that has access to potentially more con-
nection information. 
 
 Once there is a framework for programmatically setting 
parameters, one starts to see many new opportunities for 
parameters. SYN and SYN-ACK RTOs are prime examples
  

 
 In addition to support setting TCP parameters statically 
based on initial connection information, such as IP addresses 
and port numbers, TCP-BPF can also support dynamical 
approaches. For example, consider the initial congestion 
window (INIT_CWND). One could write a TCP-BPF 
program to explore a range of INIT_CWND values in order 
to arrive to per-subnet optimal INIT_CWND values. This 
could be more than just a one-time experiment; the probing 
and exploration could always be present (at appropriate rate) 
in order to adapt to changing workloads or hardware. 
 
 Of course, the uses of TCP-BPF go beyond its initial goal 
of programmatically tuning TCP parameters. It can support 
experimentation where one can try different parameter 
values as well as collecting the necessary data in order to 
evaluate the experiment. For example, fine tuning 
INIT_CWND per IP prefix. 

Overview 
TCP-BPF is a new BPF program type that attaches to a 
cgroupv2. As a result, it can support having different 
policies for applications by running the applications in 
different groups.  
 
 Existing BPF program types follow the model that there 
is a BPF program per entry (or calling) point. Thus, the BPF 
program typically knows where it is being called from. In 
contrast, a TCP-BPF program can be called from many 
different points from within the TCP execution path. An op 
value is used to indicate either where it is being called from 
or what is expected from the TCP-BPF program (more on 
this later). One reason for this approach is that in order to 
achieve some results, the TCP-BPF program needs to 
coordinate among separate calls. For example, if we want to 
optimize a connection whose endpoints are within the same 
DC, we need to set SYN RTO and SYN-ACK RTOs (a new 
parameter introduces by TCP-BPF) to small values as well 
as set small socket buffer sizes. Using separate BPF 
programs would introduce the possibility that we use 
programs that are not compatible with each other. In 
addition, it would be a big pain having to load multiple TCP-
BPF programs. 
 
 In addition to the op type, TCP-BPF program can also get 
direct access to a subset of the socket state. Finally, there are 
also the bpf helper functions getsockops and setsockops that 
can be used to get and set some TCP parameters. 



 
 As mentioned earlier, there are two types of TCP-BPF 
ops. The first type requests a particular value and its effect 
occurs through its return value. Examples of this type of op 
are: 
 
• BPF_SOCK_OPS_TIMEOUT_INIT 
• BPF_SOCK_OPS_RWND_INIT 
• BPF_SOCK_OPS_NEEDS_ECN 
• BPF_SOCK_OPS_BASE_RTT 

 
 The second type indicates where the TCP-BPF program 
is being called from and its effects occur by changes to the 
connection state. These changes can be achieved through 
calls to setsockopt or by directly changing a socket state 
value. Examples of this type of op are: 
 
• BPF_SOCK_OPS_TCP_CONNECT_CB 
• BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB 
• BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB 

 
 

Implementation 
 
TCP-BPF programs are implemented as a new BPF program 
type that attaches to a cgroupv2. The data structure 
associated with the program is called bpf_sock_ops when 
seen by the TCP-BPF program and looks like: 
 

struct bpf_sock_ops { 
    __u32 op; 
    union { 
        __u32 reply; 
        __u32 replylong[4]; 
    }; 
    __u32 family; 
    __u32 remote_ip4;       /* Stored in NBO */                         
    __u32 local_ip4;        /* Stored in NBO */ 
    __u32 remote_ip6[4];    /* Stored in NBO */ 
    __u32 local_ip6[4];     /* Stored in NBO */ 
    __u32 remote_port;      /* Stored in NBO */ 
    __u32 local_port;       /* stored in HBO */ 
/* where NBO = Network Byte Order 
   and   HBO = Host Byte Order 
 */ 
}; 

 
Current ops return their value through the reply field. The 
replylong field is there to support future ops that may require 
larger return values. 
 
The data structure associated with the kernel is called 
bpf_sock_ops_kern and looks like: 
 

struct bpf_sock_ops_kern { 
    struct   sock *sk; 
     u32     op; 
     union { 
       u32 reply; 
       u32 replylong[4]; 

     }; 
}; 
 

 The fields op, reply and replylong in the bpf_sock_ops 
structure are R/W and map directly to the respective fields 
in the kernel structure. The other fields are Read Only and 
are mapped directly by the BPF framework into direct 
accesses to the respective sock structure fields. 
 
 The function tcp_call_bpf(), defined in include/net/tcp.h , 
is used to call the TCP-BPF program. The function 
declaration is: 

 
static inline int tcp_call_bpf(struct sock *sk, 
                               int op); 
 

 There are helper functions for some of the ops defined in 
include/net/tcp.h  
 
 As mentioned earlier, there are two TCP-BPF helper 
functions. 
 

• bpf_setsockopt() is similar to the standard Linux 
setsockopt but only supports a limited number of 
options. Among the options supported are: 

o SO_RCVBUF 
o SO_SNDBUF 
o SO_MAX_PACING_RATE 
o SO_PRIORITY 
o SO_RCVLOWAT 
o SO_MARK 
o TCP_CONGESTION 
o TCP_BPF_IW 
o TCP_BPF_SNDCWND_CLAMP 

 
Where the standard options have the same meaning 
as in Linux. The two new options have the 
following meanings: 
 
TCP_BPF_IW – set initial snd_cwnd to the specified 
value. If the connection has already sent packets, 
then this is a nop. 
 
TCP_BPF_SNDCWND_CLAMP – sets the socket 
snd_cwnd_clamp and the snd_ssthresh to the 
specified value. 
 

• bpf_getsockopt() is similar to the standard Linux 
getsockopt but currently only supports one option: 

o TCP_CONGESTION 
 

Usage 
 
TCP_BPF uses cgroupsv2 BPF framework, so it is 
necessary to create a group and attach the relevant processes 
to the group. For example: 
 



mkdir -p /tmp/cgroupv2 
mount -t cgroup2 none /tmp/cgroupv2 
mkdir -p /tmp/cgroupv2/foo 
bash 
echo $$ >> /tmp/cgroupv2/foo/cgroup.procs 

 
Any program started with the current shell will belong the 
the cgroupv2 foo. If you are using netperf/netserver or iperf3 
they should be started through the current shell. 
 
To attach a TCP-BPF program to the cgroupv2 foo, one can 
use the following command: 
 

load_sock_ops [-l] <cgroupv2> <tcp-bpf program> 
 
For our example: 
 

load_sock_ops -l /tmp/cgroupv2/foo tcp_iw_kern.o 
 

tcp_iw_kern is a TCP-BPF program that only affects flows 
where one of the ports is 5560 and sets TCP parameters that 
are appropriate for larger RTTs: it set TCP’s initial 
congestion window of active opened flows to 40, the receive 
windows to 40 and send and receive buffers to 1.5MB so the 
flow can achieve better throughput. 
 
To remove/unload a TCP-BPF program 
 

load_sock_ops -r <cgroupv2> 
 

 

Example: Tuning for DC 
tcp_clamp_kern is a TCP-BPF sample program to optimize 
parameters for flows within a DC. The TCP-BPF program 
assumes that if the first 5.5 bytes of the IPv6 address match, 
then both hosts are within the same DC. In such a case, the 
TCP-BPF program set the SYN and SYN-ACK RTOs to 
10ms, send and receive buffers to 150KB. The actual 
program is shown in Appendix A. 

 To measure the benefits of fine tuning some parameters 
for intra-DC traffic we had 3 hosts send to one host (see 
Figure 1). Each host established X 1MB back-to-back RPC 
flows plus 1 streaming flow plus 2 10KB flows, for X in {1, 
2, 4, 8, 16}. Figure 2 shows the average rate of the 1MB 
RPCs for baseline and using the clamp bpf program. The 
average 1MB RPC rates are the about the same for baseline 
and using the clamp TCP-BPF program. However, the 
number of packet retransmitted is quite different. It is zero 
when using the TCP-BPF program for most of the 
experiments. As a result, the 99% Latencies are about half 
of baseline when running the TCP-BPF program (except for 
the last experiment where the retransmissions are the same 
for both).   

 

 

 

 

 
More interestingly, Figure 3 shows the rate and 
retransmissions for 10KB RPCs. When using the TCP-BPF 
program. The 10KB RPCs get much higher bandwidths 
when running the TCP-BPF program, staring 4x the 
bandwidth, as compared to baseline, when there are 12 
flows.   
 

 
Finally, Figure 4 shows the median an 99% latencies for the 
10KB Flows. Interestingly, the 99% latencies are at least 
half of baseline as long as the TCP-BPF program is able to 
prevent packet losses.  

Figure 2: Rate and retransmissions for 1MB RPCs 

Figure 3: Rate and retransmissions for 10KB RPCs 

Figure 1: Experiment scenario 



 

 
The parameter mostly responsible for the improvements 

is the cwnd window clamp. For this example, the TCP-BPF 
program sets it to 100, large enough to allow one flow to 
achieve close to 10Gbps, but small enough that allows many 
concurrent flows to coexist without packet drops. The other 
parameters used help with memory and the case when the 
SYN or SYN-ACK packets are dropped. 
 

 Although there are other mechanisms for setting the cwnd 
clamp (setsockopt and ip-route), TCP-BPF is more 
convenient because it doesn’t require any changes to the 
application and the same TCP-BPF program can be used 
everywhere, whereas ip-route would need different settings 
in each DC.  

 

Next Steps 
There are various TCP-BPF enhancements in the pipeline. 
Among them are: 
 

1. Make more TCP state available to TCP-BPF 
programs. For example cwnd, ssthresh, etc. 

2. Add more functionality to bpf_setsockopt and 
bpf_getsockopt. Examples: setting IPv6 class, 
setting flowlabels, etc. 

3. Add more entry points to TCP-BPF. For example, 
when an RTO fires, when a packet is retransmitted, 
when a packet is received or sent, etc. In order to 
reduce overhead, there will be a bitmap (per 
socket) associated with these calling points to 
determine whether they should be called.  
 The bitmap is initialized to zeroes, but can be set 
(per flow)  in the BPF program when the 
connection is established. In some cases, entry 
points could be enabled statistically (i.e. 0.01% of 
flows) enabled to allow collection (or analysis) of 
flow behavior. In many cases the RTO and 
retransmits could be enabled for all flows 
(assuming they are rare) and the TCP-BPF program 
could trigger specific behaviors, such as changing 
flow labels or congestion algorithm, when the RTO 
rates or retransmits are too high. 
 It would enable new behaviors, such as 
dynamically, i.e. not only at connection 

establishment time, tuning parameters based on the 
effect on the flow. For example, adjusting the initial 
congestion window per subnet based on whether it 
leads to losses or not. 

4. Add support for handling TCP packet header 
options. The idea is to be able to implement new 
TCP header options in BPF programs. This is 
especially useful in environments where people 
have their own local options since it decreases the 
need of maintaining local patches. 

 
 

Availability 
TCP-BPF is available starting at kernel version 4.13 
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Figure 4: 50% and 99% 10KB Latencies 



Appendix A 
SEC("sockops") 
int bpf_clamp(struct bpf_sock_ops *skops 
{ 
    int bufsize = 150000; 
    int to_init = 10; 
    int clamp = 100; 
    int rv = 0; 
    int op; 
 
    /* Check that both hosts are within same datacenter. For    
     * this example it is the case when the first 5.5 bytes of 
     * their IPv6 addresses are the same. 
     */ 
    if (skops->family == AF_INET6 && 
        skops->local_ip6[0] == skops->remote_ip6[0] && 
        (bpf_ntohl(skops->local_ip6[1]) & 0xfff00000) == 
        (bpf_ntohl(skops->remote_ip6[1]) & 0xfff00000)) { 
        switch (op) { 
        case BPF_SOCK_OPS_TIMEOUT_INIT: 
            rv = to_init; 
            break; 
        case BPF_SOCK_OPS_TCP_CONNECT_CB: 
            /* Set sndbuf and rcvbuf of active connections */ 
            rv = bpf_setsockopt(skops, SOL_SOCKET, SO_SNDBUF,  
                                &bufsize, sizeof(bufsize)); 
            rv = rv + bpf_setsockopt(skops, SOL_SOCKET, 
                                     SO_RCVBUF, &bufsize, 
                                     sizeof(bufsize)); 
            break; 
        case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: 
            rv = bpf_setsockopt(skops, SOL_TCP, 
                                TCP_BPF_SNDCWND_CLAMP, 
                                &clamp, sizeof(clamp)); 
            break; 
        case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: 
            /* Set cwnd clamp and sndbuf, rcvbuf of passive  
             * connections 
             */ 
            /* See actual program for this code */ 
        default: 
            rv = -1; 
    } else { rv = -1; } 
    skops->reply = rv; 
    return 1; 
} 
 
 

 


