

mlxsw – TC offload

● Mellanox Spectrum ASIC
● cls_flower offload to TCAM supported upstream

– Basic cls_flower keys

– Drop, mirred-redirect, vlan-modify actions

● Non-optimal TCAM utilization
– Lack of multi-table in TC (work in progress)

– Need to hint driver about future rule format somehow
● The key size defines number of TCAM rules

Packet sampling
(Yotam Gigi)

psample netlink channel

 Before, it was possible to sample packets using NFLOG
 NFLOG is a netlink channel, which is used by netfilter

 It transfers packets to userspace
 A new netlink (generic) channel, dedicated for packet sampling

 Not bound to netfilter
 Can be done used by tc action

 Similarly to NFLOG, there can be several packet sampling done in the
system, each to a different psample_group

 Packets are sent to userpspace via the “sample” generic Netlink
multicast group

 Each packet contains the psamle_group id

sample tc action

Peeks packets randomly and send them through the
psample netlink channel

Example of usage:
tc filter add dev eth0 parent ffff: matchall \
action sample rate 12 group 13

This rule is offloaded to HW if eth0 is mlxsw driver instance

TC multitable

Current state

● Each qdisc maintains one chain of filters
– struct tcf_proto __rcu *filter_list in private struct

● This is in struct net_device in case of ingress/clsact

– Qdisc_class_ops->tcf_chain op to get it from within the qdisc
private by cls_api.c

● To process the chain, qdisc calls tc_classify
– tc_classify walks the chain

● calls struct tcf_proto->classify for each node

– classify may return TC_ACT_RECLASSIFY which causes the
chain to be walked again (there is a limit of number of reclassifications)

● One chain ~ one “table”
● One qdisc ~ one chain

Multi-table motivation

● To be able to assign a pipeline instead of single
flat table
– For offload, helps to utilize HW better

● Multiple qdisc with single chain vs. one qdisc
with multiple chains
– Single qdisc variant looks nicer

● Side effect of changes would be ability to share
chains between multiple qdiscs

Plan

● Introduce a “block” to hold many chains
– Holds list_head of chains, each chain has u32 index

– struct tcf_block

● Chain 0 will be processed by default – as it is now
– New act_chain action to jump to another chain in the same block

to be processed

– Entrypoint is still struct tcf_proto __rcu *filter_list so
there is no performance penalty

● Make the “block” shareable among multiple qdiscs
● Work in progress

– https://github.com/jpirko/linux_mlxsw/commits/jiri_devel_tcmultichain

Enhancements, cleanups

Error reporting

● The infamous “We have an error talking to the
kernel”
– Great, no clue what went wrong

● Would be great to allow to pass a string
message along with -ERRSOMETHING
– How to do it?

● Ideas?

Naming consistency

● “filter” or “classifier”?
– pkt_cls.h, tfilter_notify, struct tcf_proto, TCA_*…

● “ext” or “action”?
– struct tcf_exts, struct tc_action, TCA_* (Different to the one mentioned

above),…

● One or two letter variables (often representing totally different
things)
– t, tp, th, cl, n, b, s_t, ...

● “Namespaces” for functions, structs enums and defines
● Function names

– something_add vs. add_something

UAPI consolidation

● Duplication of common Netlink attributes
– TCA_BPF_ACT, TCA_FLOWER_ACT, TCA_U32_ACT,

and many others

● Mixture of Netlink attributes and structure fields
● Attributes, defines and structs names

– TC_*, TCA_*, NETEM_*, struct tc_*, struct tcf_*

● Can we do something with it?
– Do we need a new TC UAPI? Generic netlink, parallel,

deprecate the original UAPI in ~10 years?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

