
Sowmini Varadhan(sowmini.varadhan@oracle.com)
Tushar Dave(tushar.n.dave@oracle.com)

Evaluating and improving kernel stack
performance for datagram sockets from the
perspective of RDBMS applications

mailto:sowmini.varadhan@oracle.com
mailto:tushar.n.dave@oracle.com

Agenda

• What types of problems are we trying to solve?
• Possible solutions considered
• Benchmarks used in the RDBMS env

– General networking microbenchmarks
– Cluster IPC library benchmarks

• Some results from these benchmarks for UDP,
PF_PACKET, RDS-TCP

• Next steps..

What types of problems are we trying
to solve?

Two types of use-cases for reducing latency:
• Cluster applications that are CPU-bound and can

benefit from reduced network latency
– Specific UDP flows that can be identified by a 4-tuple
– Request-response, transaction based. Request size:

512 bytes; Response size: 8192 bytes

• Extract Transform Load (ETL): input comes in
JSON, CSV (comma-separated values) etc
formats to Compute Node. Needs to be
transformed to RDBMS format and stored to disk

– Input comes in at a very high rate (e.g., from Trading)
and needs to be processed as efficiently as possible

– https://docs.oracle.com/database/121/DWHSG/etto
ver.htm#DWHSG011

https://docs.oracle.com/database/121/DWHSG/ettover.htm#DWHSG011
https://docs.oracle.com/database/121/DWHSG/ettover.htm#DWHSG011

Benchmarking with the Distributed
Lock Management Server (LMS)

• Evaluate with Lock Management Server (LMS)
• LMS: Distributed request-response environment
• “Server” is a set of processes in the cluster that is

the lock manager.
• Each client picks a port# from a port-range and

sends a UDP request to a server at that port
– Port-range is dynamically determined. Currently

getting a well-balanced hash, even without
REUSEPORT

• Client is blocked until response comes back.
• Client has to process response before it can send

the next request

I/O patterns in the LMS environment
• Server is the bottleneck in this environment

– Server side computation are CPU bound
– Client is blocked until response is received.

• Client has to process the response before it can
generate the next request

– Input tends to be bursty

• Server side Rx batching is easy to achieve- server
keeps reading input until it either runs out of buffer
space or runs out of input

• Tx side batching is trickier: client is blocked until
server sends response back, so excessive batching
at the server will make input even more bursty.

Bottlenecks in the LMS environment

• System calls: each time the server has to read/write
a packet, the system calls to recvmsg/sendmsg are
an overhead

• Control over batch-size: each time the server runs
out of input, if it has to fall back to poll(), the resulting
context switch is expensive.

– Control over optimal batch size for some packet Rx rate

• The expectation is that PF_PACKET/TPACKET_V*
will help in above two areas

Requirements from latency accelarating
solutions

• Need a select()able socket.
– DB applications get I/O from multiple sources (disk,

fs, network, etc). So network I/O must be on a socket
that can be added to a select()/poll()/epoll() fd set.

• Accelerating latency of a subset of UDP flows
must not be at the cost of regressed latency for
other network packets

– Solution must co-exist harmoniously with the existing
linux kernel stack for other network protocols.

• Solution should not be intrusive.
– Replacing socket creation, read and write routines is

ok, but major revamp of application threading model
is not acceptable.

• Support common POSIX/socket options like
SNDBUF, RCVBUF, MSG_PEEK, TIMESTAMP..

Solutions considered (and discarded)

• DPDK
– No select()able socket, not POSIX, radically different

threading model.
– Does not co-exist harmoniously with kernel stack: KNI

 huge latency burden for flows punted to linux stack;
SRIOV-based solutions dont have a good way of
correctly keeping in sync with linux control plane to
figure out the egress packet dst headers.

• Netmap
– Preliminary micro-benchmarking did not show

significant perf benefit over PF_PACKET
– exposes a lot of the driver APIs to user-space
– Host-rings solution to share packets with the kernel

stack was found to be problematic in our experiments

• PF_RING
– Another way of doing PF_PACKET/PACKET_V2?

Solutions evaluated

• Evaluate
– UDP with sendmsg/recvmsg
– UDP with recvmmsg
– PF_PACKET with TPACKET_V2, TPACKET_V3

• Expectation is that PF_PACKET with
TPACKET_V* will help by reducing system-calls
and improved control over the batching

• Benchmarks:
– General networking benchmarks (netperf)
– Convert Cluster IPC libraries (IPCLW) to use these

mechanisms and evaluate using ipclw
microbenchmarks.

– Run “CRTEST” suite and evalute the ipclw library

General networking microbenchmarks
• Standard netperf UDP_RR was used as the client

for this evaluation, with parameters: req size 512,
resp size 1024 (8K experiments use Jumbo frames
on NIC, at the current time)

– Netperf run with -N arg (nocontrol)
– 64 netperf clients started in parallel
– Flow hashing using address, port

• Application running the solution under evaluation
listens in userspace, and sends back the UDP
responses to netperf. Solutions evaluated were

– UDP sockets with recvmsg()
– UDP sockets with recvmmsg()
– PF_PACKET with TPACKET_v2 and TPACKET_v3

Server side app details

• “pkt_udp”: simplistic batching; keep looping in
{recvfrom(); sendto();} while there are packets to
eat, else fall back to poll()

• “pkt_mmsg”: infinite timeout, vlen (batchsize) = 64
• “pkt_mmap”, single-threaded server test

– TPACKET_V2, 16 frames-per-block, 2048 byte
frames

– TPACKET_v3, tmo = 10 ms, optimal sized
frames/block for best perf and CPU util

• NIC was set up to do RSS using addr, port as rx-
hash (i.e., sdfn setting for ethtool)

Netperf : single-threaded throughput

TPACKET_V3 batching behavior

Frames per
block(fpb)

Tput
(pps)

CPU-idle
(%)

16 449543 0.94

32 419282 35

64 11639 99

• Gives more control over rx
batching with Frame-per-
Block(fpb) and
timeout(TMO)

• Server thread is woken up
either after block is full of
requests or after timeout
(to avoid infinite sleep)

64 clients sending requests and 1 server thread processing....

• fpb=16, server block easily become full, once woken up server thread
remain woken up because it always have request to process, causes CPUs
to be 99% busy.

• fpb=64, takes a little while for block to become full, server thread remains
asleep and woken up when block is full; noticeable tput reduction and
CPUs are almost idle.

• fpb=32, gives a good balance between Tput and CPU utilization.

Q: Can fpb dynamically managed depending on burst of client requests?

CPU utilization vs number of polls/sec
• The CPU utilization and the rate (per second) of the

number of fallbacks to poll() was instrumented
• For UDP, recvmmsg() and TPACKET_V2

– The CPU is kept 100% busy
– At steady state (when all the netperf clients are up and

running) we never fall back to poll()- there is always Rx
input to be handled

• With TPACKET_V3, the application has more
control over the batch size, and the timeout (for
→sk_data_ready wakeup)

– For max throughput, we can keep cpu at 100% busy
– But, by adjusting frames/block and timeout, we can

better the recvmmsg perf and keep CPU at 50% idle.
Average polls/sec in this scenario is about 13.7.

– When the clients are not able to fill the Rx pipe, server
has fine-grained control over batching parameters

Converting IP Clusterware library
(ipclw) to use PF_PACKET (in
progress)
• the clusterware software is a library that is linked

in by many applications; ongoing work to convert
this to use PF_PACKET/TPACKET_V*

• Ether and IP header have to be supplied by the
application:

– need a separate thread that reads/writes on netlink
sockets to keep in sync with kernel control plane

• Currently using Jumbo frames to send 8K
responses, but this does not work when the dst is
not directly connected

– Either need IP frag management in user space or
need UFO

• Currently skipping UDP checksum. In Production,
we would need to offload UDP cheksum with
PF_PACKET

Using CRTEST suite for verifying IPCLW

• A series of Cluster atomic benchmark tests for
evaluating IPC performance. Simulates a typical
RDBMS workload.

• Transfer data blocks over the cluster interconnect.
• Uses the IPCLW library for IPC, with various transports

e.g., RDS-TCP, UDP, RDS-IB
• The LMS server node will have its buffer cache

warmed up with “XCUR” buffers for all blocks in the
test object.

– XCUR == Exclusive Current. Only the instance that holds
this Exclusive lock can change the block

• The client node will SELECT single blocks: read-only
request that causes the instance holding the XCUR
lock to make a “Consistent Read” (CR) copy that is
shipped to the instance requesting the lock.

Handling large UDP packets

• CPU utilization is a bottleneck: now that the
application can process packets faster, it’s keep
the CPU util at 100%, so any stack latency
reduction is desirable

• If large UDP packets have to be broken down to a
smaller MTU, something needs to do the IP
frag/reassembly

– UDP fragmentation offload to the NIC

CRTEST: test parameters

• Tested with nclients: {1, 2, 4, 8, 16, 24, 32, 48, 64}
• Both (single-path) RDS-TCP and UDP transports

were tested
• For each value of nclients, instrument throughput

and latency
• Objective:

– Compare perf of RDS-TCP and UDP
– Use Jumbo frames as an emulation of UDP

fragmentation offload (UFO) to see if/how much it
helps

CRTEST results

Thanks to yasuo.hirao@oracle.com for generating CRTEST data

mailto:yasuo.hirao@oracle.com

CRTEST analysis

• The “wall” is a result of the server-side bottleneck.
– As we increase the number of clients, there is a

single server processing requests and sending
responses. At the “wall”, we’ve hit the server side
latency bottleneck: adding more clients does not
increase throughput, but client requests spend more
time on queue, so increase latency

• Why is the RDS-TCP “wall” to the right of UDP?
– RDS-TCP has a single engine for tracking reliable,

ordered, guaranteed delivery in the kernel
– UDP runs multiple copies of seq/ack tracking engines

in user-space. Thus it uses up more CPU for these
engines, plus it is more vulnerable to scheduling
delays in uspace (causing ACK timeout,
unnecessary retransmits etc).

CRTEST and Jumbo frames

• Both throughput and latency improve significantly
for UDP when going from 1500 → Jumbo MTU!

– Latency: 2600 μs → 1800 μs
– Throughput: 22K → 25K blocks/s (8192 bytes/block)

• Why doesn’t TCP show the same jump in perf
improvement?

Benefits of Jumbo for UDP vs TCP

• UDP protocol layer is stateless (esp in comparison
with TCP)- most of the heavy lifting is done in the
IP layer, around IP fragmentation/reassembly

– Enabling Jumbo takes away a large part of that
overhead- much better CPU utilization and throughput

• TCP already has TSO enabled, so it is able to
send down large data packets to the driver

• Even with TSO, TCP has to manage a lot of
protocol state, so the benefit of Jumbo is less than
the equivalent for UDP

• Moral: UFO could vastly benefit many UDP based
protocols!

Microbenchmarking vs production:
lessons learned
• System tuning has to be done with caution: cannot favor

of one flow/protocol/packet-size if it hurts some other
feature/flow

– e.g., cannot disable iommu, ethernet flow-control, tweak
sysctl tunables in favor of specific TCP/UDP socket flavors

– Cannot tune ethtool with sdfn
– tcpdump and other packet consumers must continue to

work - need to co-exist with host-stack

• Cannot rely on Jumbo for handling large packet sizes
– Frag/reassembly challenges must be confronted.

• Cannot really fully exploit the benefits of shared
memory when shimming things through a library

Exploiting zerocopy/shmem

• Even though TPACKET_V* allows the application
to use shared memory, end up having to memcpy
the packet to/from a user buffer in the library

• Reason: application calls some library function for
read/write, and provides a buffer. Library has no
control over when that buffer will eventually be
released back to the kernel.

• One area where we can shave off a bcopy is by
DMA-ing directly into the shmem buffer (avoid the
sk_buff copy on Rx side)..

• Others?

Ongoing work

• Working on converting ipclw libraries to use
PF_PACKET/TPACKET_V2, TPACKET_V3

• More NIC support for UFO
– Can send down arbitrarily large frames to driver
– Will give much better CPU utilization for many

protocols that encaps in UDP (more and more of
these showing up!)

– Challenge may be UDP checksum of very large
packets?

• Extend some of the TPACKET ideas for other
socket types like RDS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

