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Agenda

• What types of problems are we trying to solve? 
• Possible solutions considered
• Benchmarks used in the RDBMS env

– General networking microbenchmarks
– Cluster IPC library benchmarks 

• Some results from these benchmarks for UDP, 
PF_PACKET, RDS-TCP

• Next steps..



What types of problems are we trying 
to solve?

Two types of use-cases for reducing latency:
• Cluster applications that are CPU-bound and can 

benefit from reduced network latency
– Specific UDP flows that can be identified by a 4-tuple
– Request-response, transaction based. Request size: 

512 bytes; Response size: 8192 bytes

• Extract Transform Load (ETL): input comes in 
JSON, CSV (comma-separated values) etc 
formats to Compute Node. Needs to be 
transformed to RDBMS format and stored to disk 

– Input comes in at a very high rate (e.g., from Trading) 
and needs to be processed as efficiently as possible

– https://docs.oracle.com/database/121/DWHSG/etto
ver.htm#DWHSG011

https://docs.oracle.com/database/121/DWHSG/ettover.htm#DWHSG011
https://docs.oracle.com/database/121/DWHSG/ettover.htm#DWHSG011


Benchmarking with the Distributed 
Lock Management Server (LMS)

  
• Evaluate with Lock Management Server (LMS)
• LMS: Distributed request-response environment
• “Server” is a set of processes in the cluster that is 

the lock manager. 
• Each client picks a port# from a port-range and 

sends a UDP request to a server at that port
– Port-range is dynamically determined. Currently 

getting a well-balanced hash, even without 
REUSEPORT

• Client is blocked until response comes back.
• Client has to process response before it can send 

the next request



I/O patterns in the LMS environment
• Server is the bottleneck in this environment

– Server side computation are CPU bound
– Client is blocked until response is received.

• Client has to process the response  before it can 
generate the next request

– Input tends to be bursty

• Server side Rx batching is easy to achieve-  server 
keeps reading input until it either runs out of buffer 
space or runs out of input

• Tx side batching is trickier: client is blocked until 
server sends response back, so excessive batching 
at the server will make input even more bursty.



Bottlenecks in the LMS environment

• System calls: each time the server has to read/write 
a packet, the system calls to recvmsg/sendmsg are 
an overhead

• Control over batch-size: each time the server runs 
out of input, if it has to fall back to poll(), the resulting 
context switch is expensive.

– Control over optimal batch size for some packet Rx rate

• The expectation is that PF_PACKET/TPACKET_V* 
will help in above two areas



Requirements from latency accelarating 
solutions

• Need a select()able socket.
– DB applications get I/O from multiple sources (disk, 

fs, network, etc). So network I/O must be on a socket 
that can be added to a select()/poll()/epoll() fd set.

• Accelerating latency of a subset of UDP flows 
must not be at the cost of regressed latency for 
other network packets

– Solution must co-exist harmoniously with the existing 
linux kernel stack for other network protocols.

• Solution should not be intrusive.
– Replacing socket creation, read and write routines is 

ok, but major revamp of application threading model 
is not acceptable.

• Support common POSIX/socket options like 
SNDBUF, RCVBUF, MSG_PEEK, TIMESTAMP..



Solutions considered (and discarded)

• DPDK
– No select()able socket, not POSIX, radically different 

threading model.
– Does not co-exist harmoniously with kernel stack: KNI 

 huge latency burden for flows punted to linux stack; 
SRIOV-based solutions dont have a good way of 
correctly keeping in sync with linux control plane to 
figure out the egress packet dst headers. 

• Netmap
– Preliminary micro-benchmarking did not show 

significant perf benefit over PF_PACKET
– exposes a lot of the driver APIs to user-space  
– Host-rings solution to share packets with the kernel 

stack was found to be problematic in our experiments

• PF_RING
– Another way of doing PF_PACKET/PACKET_V2?



Solutions evaluated

• Evaluate 
– UDP with sendmsg/recvmsg
– UDP with recvmmsg
– PF_PACKET with TPACKET_V2, TPACKET_V3

• Expectation is that PF_PACKET with 
TPACKET_V* will help by reducing system-calls 
and improved control over the batching

• Benchmarks:
– General networking benchmarks (netperf)
– Convert Cluster IPC libraries (IPCLW) to use these 

mechanisms and evaluate using ipclw 
microbenchmarks. 

– Run “CRTEST” suite and evalute the ipclw library



General networking microbenchmarks
• Standard netperf  UDP_RR was used as the client 

for this evaluation, with parameters: req size 512, 
resp size 1024 (8K experiments use Jumbo frames 
on NIC, at the current time)

– Netperf run with -N arg (nocontrol)
– 64 netperf clients started in parallel
– Flow hashing using address, port 

• Application running the solution under evaluation 
listens in userspace, and sends back the UDP 
responses to netperf. Solutions evaluated were

– UDP sockets with recvmsg()
– UDP sockets with recvmmsg()
– PF_PACKET with TPACKET_v2 and TPACKET_v3



Server side app details

• “pkt_udp”: simplistic batching; keep looping in 
{recvfrom(); sendto();} while there are packets to 
eat, else fall back to poll()

• “pkt_mmsg”: infinite timeout, vlen (batchsize) =  64
• “pkt_mmap”, single-threaded server test

– TPACKET_V2, 16 frames-per-block, 2048 byte 
frames

– TPACKET_v3, tmo = 10 ms, optimal sized 
frames/block for best perf and CPU util

• NIC was set up to do RSS using addr, port as rx-
hash (i.e., sdfn setting for ethtool)



Netperf : single-threaded throughput



TPACKET_V3 batching behavior

Frames per 
block(fpb)

Tput
(pps)

CPU-idle
(%)

16 449543 0.94

32 419282 35

64 11639 99

• Gives more control over rx 
batching with Frame-per-
Block(fpb) and 
timeout(TMO)

• Server thread is woken up 
either after block is full of 
requests or after timeout 
(to avoid  infinite sleep)

64 clients sending requests and 1 server thread processing....

• fpb=16, server block easily become full, once woken up server thread 
remain woken up because it always have request to process, causes CPUs 
to be 99% busy.

• fpb=64, takes a little while for block to become full, server thread remains 
asleep and woken up when block is full; noticeable tput reduction and 
CPUs are almost idle.

• fpb=32, gives a good balance between Tput and CPU utilization.

Q: Can fpb dynamically managed depending on burst of client requests?



CPU utilization vs number of polls/sec
• The CPU utilization and the rate (per second) of the 

number of fallbacks to poll() was instrumented
• For UDP, recvmmsg() and TPACKET_V2

– The CPU is kept 100% busy
– At steady state (when all the netperf clients are up and 

running) we never fall back to poll()- there is always Rx 
input to be handled

• With TPACKET_V3, the application has more 
control over the batch size, and the timeout (for 
→sk_data_ready wakeup)

– For max throughput, we can keep cpu at 100% busy
– But, by adjusting frames/block and timeout, we can 

better the recvmmsg perf and keep CPU at 50% idle. 
Average polls/sec in this scenario is about 13.7.

– When the clients are not able to fill the Rx pipe, server 
has fine-grained control over batching parameters 



Converting IP Clusterware library 
(ipclw) to use PF_PACKET (in 
progress)
• the clusterware software is a library that is linked 

in by many applications; ongoing work to convert 
this to use PF_PACKET/TPACKET_V*

• Ether and IP header have to be supplied by the 
application: 

– need a separate thread that reads/writes on netlink 
sockets to keep in sync with kernel control plane

• Currently using Jumbo frames to send 8K 
responses, but this does not work when the dst is 
not directly connected

– Either need IP frag management in user space or 
need UFO 

• Currently skipping UDP checksum. In Production, 
we would need to offload UDP cheksum with 
PF_PACKET



Using CRTEST suite for verifying IPCLW

• A series of Cluster atomic benchmark tests for 
evaluating IPC performance. Simulates a typical 
RDBMS workload. 

• Transfer data blocks over the cluster interconnect. 
• Uses the IPCLW library for IPC, with various transports 

e.g., RDS-TCP, UDP, RDS-IB
• The LMS server node will have its buffer cache 

warmed up with “XCUR” buffers for all blocks in the 
test object.

– XCUR == Exclusive Current. Only the instance that holds 
this Exclusive lock can change the block

• The client node will SELECT single blocks: read-only 
request that causes the instance holding the XCUR 
lock to make a “Consistent Read” (CR) copy that is 
shipped to the instance requesting the lock. 



Handling large UDP packets

• CPU utilization is a bottleneck: now that the 
application can process packets faster, it’s keep 
the CPU util at 100%, so any stack latency 
reduction is desirable

• If large UDP packets have to be broken down to a 
smaller MTU, something needs to do the IP 
frag/reassembly

– UDP fragmentation offload to the NIC



CRTEST: test parameters

• Tested with nclients: {1, 2, 4, 8, 16, 24, 32, 48, 64}
• Both (single-path) RDS-TCP and UDP transports 

were tested
• For each value of nclients, instrument throughput 

and latency
• Objective:

– Compare perf of RDS-TCP and UDP
– Use Jumbo frames as an emulation of UDP 

fragmentation offload (UFO) to see if/how much it 
helps



CRTEST results

Thanks to yasuo.hirao@oracle.com for generating CRTEST data

mailto:yasuo.hirao@oracle.com


CRTEST analysis

• The “wall” is a result of the server-side bottleneck.
– As we increase the number of clients, there is a 

single server processing requests and sending 
responses. At the “wall”, we’ve hit the server side 
latency bottleneck: adding more clients does not 
increase throughput, but client requests spend more 
time on queue, so increase latency

• Why is the RDS-TCP “wall” to the right of UDP? 
– RDS-TCP has a single engine for tracking reliable, 

ordered, guaranteed delivery in the kernel
– UDP runs multiple copies of seq/ack tracking engines 

in user-space. Thus it uses up more CPU for these 
engines, plus it is more vulnerable to scheduling 
delays in uspace (causing ACK timeout,  
unnecessary retransmits etc).



CRTEST and Jumbo frames

• Both throughput and latency improve significantly 
for UDP when going from 1500 → Jumbo MTU!

– Latency: 2600 μs → 1800 μs
– Throughput: 22K → 25K blocks/s (8192 bytes/block)

• Why doesn’t TCP show the same jump in perf 
improvement?



Benefits of Jumbo for UDP vs TCP

• UDP protocol layer is stateless (esp in comparison 
with TCP)-  most of the heavy lifting is done in the 
IP layer, around IP fragmentation/reassembly

– Enabling Jumbo takes away a large part of that 
overhead- much better CPU utilization and throughput

• TCP already has TSO enabled, so it is able to 
send down large data packets to the driver

• Even with TSO, TCP has to manage a lot of 
protocol state, so the benefit of Jumbo is less than 
the equivalent for UDP

• Moral: UFO could vastly benefit many UDP based 
protocols!



Microbenchmarking vs production: 
lessons learned
• System tuning has to be done with caution: cannot favor 

of one flow/protocol/packet-size if it hurts some other 
feature/flow

– e.g., cannot disable iommu, ethernet flow-control, tweak 
sysctl tunables in favor of specific TCP/UDP socket flavors

– Cannot tune ethtool with sdfn
– tcpdump and other packet consumers must continue to 

work - need to co-exist with host-stack

• Cannot rely on Jumbo for handling large packet sizes
– Frag/reassembly challenges must be confronted.

• Cannot really fully exploit the benefits of shared 
memory when shimming things through a library



Exploiting zerocopy/shmem

• Even though TPACKET_V* allows the application 
to use shared memory, end up having to memcpy 
the packet to/from a user buffer in the library

• Reason: application calls some library function for 
read/write, and provides a buffer. Library has no 
control over when that buffer will eventually be 
released back to the kernel.

• One area where we can shave off a bcopy is by 
DMA-ing directly into the shmem buffer (avoid the 
sk_buff copy on Rx side)..

• Others?



Ongoing work

• Working on converting ipclw libraries to use 
PF_PACKET/TPACKET_V2, TPACKET_V3

• More NIC support for UFO
– Can send down arbitrarily large frames to driver
– Will give much better CPU utilization for many 

protocols that encaps in UDP (more and more of 
these showing up!)

– Challenge may be UDP checksum of very large 
packets?

• Extend some of the TPACKET ideas for other 
socket types like RDS?
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