
Anjali Singhai Jain

Alexander Duyck

Parthasarathy Sarangam

Nrupal Jani

April 2017, NetDev 2.1

Progress, far from consisting in change, depends on retentiveness. When
change is absolute there remains no being to improve and no direction is set
for possible improvement: and when experience is not retained, as among
savages, infancy is perpetual. Those who cannot remember the past are
condemned to repeat it.

- George Santayana

2

• Evolution of Network I/O Virtualization in Linux

• SR-IOV Pros and Cons

• Future of Network I/O Virtualization

• Comparison

• Conclusion

Agenda

3

Evolution of Network I/O Virtualization

• SW Emulated (e1000)

• Pros: A driver already existed based on actual device. “It just works!”

• Cons: Very Basic designed for Single Core system. Optimized for HW.

• Para Virtualized (Virtio)

• Pros: Optimized for SW Emulation, support for 64K frames, East-West
traffic.

• Cons: Small packet performance suffers as we still have to take traps,
memcpy, etc.

• Direct Assignment

• Pros: Existing driver can be used, direct access to device w/o traps.

• Cons: Security issues, scaling issues

• SR-IOV Contd.

SR-IOV Pros and Cons
Pros:

• More Scalable than Direct Assign

• Security through IOMMU and function isolation

• Control Plane separation through PF/VF notion

• High packet rate, Low CPU, Low latency thanks to Direct Pass through

Cons:

• Rigid: Composability issues

• Control plane is pass through, puts pressure on Hardware resources

• Parts of the PCIe config space are direct map from Hardware

• Limited scalability (16 bit)

• SR-IOV NIC forces switching features into the HW

• All the Switching Features in the Hardware or nothing

Switching in the NIC

Host

NIC

3 U TOR

VMVM

Switching Features in the Hardware
From Basic MAC filtering and mac based switching… ...to more complete Switch Features…

Anti-spoof (Basic ACL) Mirroring

Encryption offloads

VLAN filtering/switching/pruning Tunnel End point Offloads

Metering and policing

Port VLAN Egress and Ingress forwarding rules

HW offloaded ACLs

L3-L4 based forwarding/drop rules HW LAG

HW Learning

Flow counters Multiple control Domains (Infrastructure and Tenant)

Control Plane offloads?

Tunnel based forwarding

Broadcast/Multicast replication

Future or In Progress Enhancements

• Adaptive Virtual Function Driver

• Live Migration with SR-IOV

• Para Virtualized solution with HW Acceleration

• Future thoughts: (Composable VFs)

9

Adaptive Virtual Function

Hypervisor

VM1 VM2 VM3

PF1 PF2 PF3

AVF AVF AVF

Adapter Gen1 Adapter Gen2 Adapter Gen3

Customer Needs:

• Need a single VF driver for all generations of Devices.

Solution:

• Adaptive Virtual Function driver with Base feature set
that is Forward compatible.

• Base features

• Negotiated advanced features

Benefits:

• Existing VM Images will run on the new hardware
unchanged.

10

Para-virtualized with HW Acceleration

PF Driver

PF

Virtual Switch
VEB

VSI VSI VSI

Port

Common-device
Backend

Common-
device

Backend

Common-
device

Backend

TCP/IP

Common-Driver
Frontend

IOMMU (Map HW memory to VM)

VM
QEMULinux

Kernel

User

Common-
device

Common-
device

Common-
device

Dedicated resources

TCP/IP

Common-Driver
Frontend

VM

OVS Slow Path

Live Migration Issue with SR-IOV

Requirements:

• Tracking Dirty Pages

• Moving Switch state

• Hairpin (Switching redirect)

• Minimize Packet Drop rate (Implied)

Multiple Solutions:

• Hardware agnostic, Teaming Solution

• Hardware aware Solution

• Hardware agnostic Solution:
• Integrated Teaming in software using emulated interface and pass through interface in the same driver.

• Because of failover to emulated path, dirty pages tracked by PML.

• Hardware aware Solution:
• IOMMU tracking dirty pages (platform level solution)

• NIC based solution

• Common driver for pass through and para-virtualized.

• Shared Pages between VM and Hypervisor for the queue structures.

• Doorbell is mapped in VM’s address space in the fast path.

• When ready to migrate, un-map the doorbells and interrupts

• VM exit handlers are programmed appropriately.

• Which then automatically result in VM exit and the exit handler will wake up the emulated path.

Future: Composable VFs

 Bring your own fast path, but a common management of devices and
drivers in a device agnostic way.

 Get away from the PCIe Spec limitations, fabricated PCIe device for
the VM.

 Too much pass through – separate the data fast path and Control
path in Hardware. Control path can be in software, leaving only data
fast path as pass through.

Network Performance Comparison

Virtio-net

Virtio + xdp

SR-IOV
Composable

VFs

P
e

rf
o

rm
a

n
ce

Solutions

SW Emulation
SW Emulation + xdp
HW assisted
Complete HW Offload

Other points of Comparison

• Flexibility in the Hardware implementation

• Offloads that require driver change vs. the ones that don’t

• Number of Control Domains possible (Infrastructure vs.
Tenant)

• East-West traffic between VMs

• Overall Cost of maintenance

Conclusion

• SR-IOV is good but it can be improved.

• More software/hypervisor support is needed or already being worked on to
reduce how much we do in the hardware for the slow path and/or control plane.

• Hypervisor should take into consideration both a device agnostic/emulated model
and a device specific accelerated model for a better user experience and
migratable solution.

• SwitchDev model works for an SR-IOV control plane, but still need to look into
how well it will scale.

• XDP based acceleration to bypass hypervisor stack can solve some of the Network
virtualization bottleneck in the emulated path.

Acknowledgement

• Dan Daly

• Liang Cunming

• John Fastabend

• Kiran Patil

• Mitch Williams

• Neerav Parikh

 We at Intel are dedicated in raising the bar on Network Virtualization in
terms of ease of use and feature richness for both the Cloud and Comms
customers in a way that is scalable and performant.

 There is a need to rethink both the Hardware design and Software design
to cater to this huge spectrum of use cases and Data explosion due to IoT.

 It requires community support and expertise.

Take Away

20

OVS

PF Driver

PF

Virtual Switch
VEB

VSI VSI VSI

Port

Common-device
Backend

Common-
device

Backend

Common-
device

Backend

TCP/IP

Common-Driver
Frontend

IOMMU (Map HW memory to VM)

VM
QEMU

Linux

Kernel

User

Common-
device

Common-
device

Common-
device

Live Migration using Para virtualized (Fast path)

21

Live Migration using Para virtualized (Failover path)

OVS

PF Driver

PF

Virtual Switch
VEB

VSI VSI VSI

Port

Common-device
Backend

Common-
device

Backend

Common-
device

Backend

TCP/IP

Common-Driver
Frontend

VM
QEMU

Linux

Kernel

User

Common-
device

Common-
device

Common-
device

HW State is extracted and injected
To Software Backend

