
XDP in practice:
integrating XDP into our DDoS mitigation pipeline

Gilberto Bertin
Cloudflare Ltd.

London, UK
gilberto@cloudflare.com

Abstract

To absorb large DDoS (distributed denial of service) attacks,
the Cloudflare DDoS mitigation team has developed a solu-
tion based on kernel bypass and classic BPF. This allows us to
filter network packets in userspace, skipping the usual packet
processing done by Netfilter and the Linux network stack. This
approach has solved performance issues that were experienced
whilst handling large packet floods using solely the vanilla
Linux kernel features.
In this paper we will first introduce our current architecture and
then discuss a proposed solution based on XDP and eBPF. We
will explain how XDP can be used in our infrastructure and
which parts of our system need to be rewritten and adapted to
make use of it. We will then conclude with the issues we have
experienced so far with XDP.

Keywords
XDP, eBPF, DDoS

Introduction
With more than a hundred points of presence and millions of
customer websites, Cloudflare has visibility into a significant
portion of internet traffic. As a reverse proxy our servers sit in
front of customer servers and filter out traffic that is deemed
to be malicious. Every day we have to mitigate hundreds of
DDoS attacks targeting many different web properties.

In the last 3 years we have developed a fully automated
DDoS mitigation system that we have named GateBot. This
system is constantly monitoring the traffic flowing through
our network and is able to detect different kind of DDoS at-
tacks. Once an attack is detected, GateBot automatically de-
ploys mitigation rules to filter it.

Current architecture
The current pipeline architecture can be broken down into the
following phases:

• Traffic sampling

• Traffic aggregation and analysis

• Attack reaction

• Attack mitigation

Figure 1: GateBot architecture.

It is worth noting that GateBot architecture is not based on
specific scrubbing centers where attack traffic is forwarded to
be filtered. Traffic is rather filtered directly on the edge. The
system works as follow:

• our servers send sampled traffic to a central location

• the central system detects attacks and deploys mitigation
rules back to the edge servers

• the edge servers apply the mitigations to filter out mali-
cious traffic

Traffic sampling
Analysing the entire traffic flowing through our network
would be impractical and a waste of resources. In fact, when
dealing with DDoS attacks of millions of packets per second,
only a fraction of the traffic is more than sufficient to detect
malicious floods. This is why our pipeline works with packet
samples.

Samples are collected on every machine using the Iptables
NFLOG target, and are then forwarded to a userspace daemon,
which encapsulates them in Sflow [1] UDP packets that are
sent to a datacenter where they are aggregated and analysed.



Figure 2: Example of multiple attacks over 24 hours. The
green line represents the attack traffic in packets per second,
while the yellow one represents the legitimate traffic.

Traffic aggregation and analysis
To better understand how attacks are detected it is necessary
to first define what an attack is. An attack can be generically
defined as a big spike of traffic targeting a specific IP/subnet
and service. Attacks are usually measured in packets per sec-
ond, but for certain types of attacks bytes per second is also a
meaningful metric.

After samples have been collected in a central location,
they are then aggregated into macro categories (e.g. TCP
SYN samples are separated from UDP/DNS ones) and ev-
ery group is analysed separately. For every group the traffic
is then partitioned into different flows which share common
characteristics. At first traffic is aggregated by the destination
network and port pair, which allows us to detect attacks tar-
geting a specific IP (or subnet) and service. On top of that we
apply other aggregations based on known attack vectors and
other heuristics. The result of this phase is a description of all
the different floods the network is receiving.

Reacting
Once traffic is aggregated we apply a thresholding mecha-
nism to distinguish attacks that must be mitigated, from at-
tack traffic that is just too low to cause any harm. Then other
factors like the topology of the attack and the SLA of the at-
tacked customer are taken into account to determine parame-
ters for the mitigation action. The output of this phase is an
abstract description of the mitigations that should be applied.
For example GateBot may have detected a 1 million packets
per second attack against a specific DNS name server, with a
random prefix DNS queries in payload.

Then every rule’s abstract description is turned into a BPF
bytecode that can be run on the edge to filter the attack traffic.
For this task we developed a set of utilities called bpftools
[2]. There are different utilities prepared for different kinds
of traffic; every tool works by accepting parameters which
describe the type of traffic that has to be matched, producing
as output the appropriate BPF bytecode.

Choosing BPF was initially motivated by the fact that when
we were relying solely on Iptables to filter traffic, Iptables
was not expressive enough to describe certain kind of attacks.
Thanks to the xt bpf module, BPF appeared to be the best

option to express arbitrarily complex filtering patterns (u32
was another potential alternative, but it was not as flexible
as BPF). Later on, when we started filtering traffic with a
userspace tool, BPF proved again to be the right choice for
us, since it was easy to run the same bytecode we were using
with Iptables with a userspace BPF interpreter.

Pushing mitigations to the server

After the reaction phase, mitigation rules have to be applied
to the servers which are targeted by the attacks. For this task
we use a distributed key-value database which allows us to
push rules rapidly to our fleet of machines. On every server
a daemon listens for updates on the KV store, and when new
rules are published, the daemon updates the mitigations on
the machine accordingly.

In practice mitigations are applied using two different sys-
tems: Iptables and a program which allows us to run BPF
in userspace on the traffic (bypassing the network stack and
Iptables).

Iptables Initially Iptables was the only tool used to mitigate
DDoS attacks. With the help of bpftools and the xt bpf
module it was possible to express complex filtering rules: ba-
sic packet patterns were expressed as a regular Iptables rule,
while the remaining matching logic was expressed using BPF.
However we soon started experiencing performance limita-
tions: mitigating large attacks only with Iptables was causing
our servers to suffer from IRQ storms where all the CPUs
were busy processing just network packets and the applica-
tions were starved of CPU. This situation forced us to evalu-
ate a different approach based on kernel bypass.

Over the time we noticed some improvements in the ability
of Iptables to handle more and more traffic (especially with
Linux 4.4 and the introduction of TCP lockless listeners[3])
but we are still observing better performance with our solu-
tion based on kernel bypass.

Kernel bypass and userspace filtering To overcome Ipta-
bles performance limitations, a userspace utility to filter net-
work traffic has been developed. This solution is based on
the SolarFlare EF VI API, which allows to map one or more
network card rings in userspace, bypassing completely the
Linux network stack. Packets are then filtered using BPF and
the legitimate traffic is reinjected back in the network stack.

The performance of this solution is an order of magnitude
greater than Iptables in terms of packets per second filtered,
but it still presents some issues: first the EF VI API works by
installing hardware flow steer rules, based on the destination
IP and port, that redirect specific traffic to one or more receive
queues that are then mapped in userspace. This means that
in some circumstances we may end up offloading a consid-
erable amount of legitimate traffic to userspace, which then
has to be reinjected to the network stack (with potential per-
formance implications). Moreover, to minimize the latency
the userspace program has to constantly poll the event queue,
which means that one or more CPUs (depending on the type
of the attacks) must be completely reserved for this task.



Migrating to XDP
In this section we will present how we are planning to mi-
grate from our current solution based on classical BPF and
Iptables/userspace offload to eBPF and XDP.

ebpftools
Currently every filtering rule is expressed as a list of Iptables
parameters (like the IP or network, TCP flags, . . . ) and op-
tionally some BPF bytecode to match specific patterns that is
not possible to express by just using Iptables.

With eBPF and XDP it will be possible to express the entire
filtering logic for all the rules in a single XDP program. The
following is a simplified example of how a XDP program that
mitigates multiple attacks may look like:

struct bpf_map_def SEC("maps") c_map = {
.type = BPF_MAP_TYP_PERCPU_ARRAY,
.key_size = sizeof(int),
.value_size = sizeof(long),
.max_entries = 256,

};

void sample_packet(void *data, void *data_end) {
// mark the packet to be sampled

}

static inline void update_rule_counters(int rule_id) {
long *value =

bpf_map_lookup_elem(&c_map, &rule_id);

if (value)

*value += 1;
}

static inline int rule_1(void *data, void *data_end) {
// if any of the rule conditions is not met
// return XDP_PASS;

update_rule_counters(1);
sample_packet(data, data_end);

return XDP_DROP;
}

// static inline int rule_2(..)

SEC("xdp1")
int xdp_prog(struct xdp_md *ctx) {

void *data = (void *)(long)ctx->data;
void *data_end = (void *)(long)ctx->data_end;
int ret;

ret = rule_1(data, data_end);
if (ret != XDP_PASS)

return ret;

ret = rule_2(data, data_end);
if (ret != XDP_PASS)

return ret;

//..

return XDP_PASS;
}

The main function (xdp prog) is composed of a list of
if statements, one for each of the filtering rules. Each rule is

then expressed as another list of if statements which represent
all the conditions that the packet must meet to be discarded;
in case any of the statements is false, the rule is not a match
for the packet and the next rule is evaluated.

If instead a rule happens to be a match two more actions are
required. First a small fraction of the traffic that is going to
be dropped should be sampled (i.e. collected by the userspace
daemon that sends Sflow packets to the location where they
will be analysed). This is needed because sampling happens
on the edge, and we cannot lose visibility of the traffic while
the attacks are being mitigated.

The next action is accounting: by keeping an eBPF map
shared with a userspace program it is possible to collect met-
rics about the number of packets that were dropped by XDP.
This can be done simply by using the id of the attack (a unique
number we assign to every attack we detect) as key of the
map, and by incrementing the associated value each time a
packet is dropped. After sampling and accounting, the func-
tion will just return XDP DROP.

Otherwise, if none of the rules are a match, the main func-
tion of the XDP program will just return XDP PASS.

This simple and linear structure is motivated by the fact
that the C source of the XDP program will be generated auto-
matically by another script, which will replace bpftools.

Figure 3: How the attack abstract description is turned into
eBPF bytecode and distributed to the edge servers.

This script will accept as input the same abstract descrip-
tion of the attacks that we have already covered in the ”Re-
acting” section, and will produce a C XDP program file. This
source file will be then compiled to eBPF, and the bytecode
will be distributed (together with the attacks metadata) to our
servers using the same KV store we are already using.

Iptables
In our current setup Iptables is used to filter small floods and
to apply connection tracking rules.

With XDP it will be possible to move away the entire fil-
ter logic from Iptables. However we still think Iptables is the
right tool to apply connection tracking rules, since XDP has



no access to the information about the state of TCP connec-
tions.

Userspace offload
Our userspace offload utility will not be needed anymore.
However we will still need a userspace utility which will:

• listen for rule updates from the KV store (the same we are
already using)

• deploy and replace new/updated XDP filtering programs

• collect and expose metrics from the eBPF maps

p0f to eBPF compiler
One of the first projects we adapted to eBPF is our p0f to BPF
compiler [4].

p0f[5] is a tool to passively analyse and categorise network
traffic. For us one of its most useful features is the signa-
ture format it uses to serialise all the meaningful fields of a
TCP SYN packet. In practice a signature is represented as a
comma separated list of values. A sample one looks like this:

4:64:0:*:mss*10,6:mss,sok,ts,nop,ws:df,id+:0
We found this format extremely concise yet powerful to de-
scribe some kind of attacks, and so we adopted it in our mit-
igation pipeline. Our original p0f compiler is a Python script
that accepts a p0f signature as input and produces BPF byte-
code that matches that exact signature. It works by first build-
ing a Tcpdump filter for the signature, which is then compiled
down to BPF assembly. This BPF bytecode can then be used
in Iptables or in our userspace offload program to match spe-
cific attack patterns.

Moving from BPF to eBPF brought many improvements:

• the script now emits C code, which is more readable than
the previous Tcpdump filter and can be optimized by Clang

• there is no longer a 64 instruction limitation, which can be
hit in case of very articulated signatures

• it is easy to combine multiple p0f programs together, since
they are just C functions that accept an XDP context and
return an XDP action

The following extract is an example of the C code that the
p0f to eBPF compiler generates automatically:

static inline int match_p0f(void *data, void *data_end) {
struct ethhdr *eth_hdr;
struct iphdr *ip_hdr;
struct tcphdr *tcp_hdr;
u8 *tcp_opts;

eth_hdr = (struct ethhdr *)data;
if (eth_hdr + 1 > (struct ethhdr *)data_end)

return XDP_ABORTED;
if_not (eth_hdr->h_proto == htons(ETH_P_IP))

return XDP_PASS;

ip_hdr = (struct iphdr *)(eth_hdr + 1);
if (ip_hdr + 1 > (struct iphdr *)data_end)

return XDP_ABORTED;
if_not (ip_hdr->daddr == htonl(0x1020304))

return XDP_PASS;
if_not (ip_hdr->version == 4)

return XDP_PASS;

if_not (ip_hdr->ttl <= 64)
return XDP_PASS;

if_not (ip_hdr->ttl > 29)
return XDP_PASS;

if_not (ip_hdr->ihl == 5)
return XDP_PASS;

if_not ((ip_hdr->frag_off & IP_DF) != 0)
return XDP_PASS;

if_not ((ip_hdr->frag_off & IP_MBZ) == 0)
return XDP_PASS;

tcp_hdr = (struct tcphdr*)((u8 *)ip_hdr +
ip_hdr->ihl * 4);

if (tcp_hdr + 1 > (struct tcphdr *)data_end)
return XDP_ABORTED;

if_not (tcp_hdr->dest == htons(1234))
return XDP_PASS;

if_not (tcp_hdr->doff == 10)
return XDP_PASS;

if_not ((htons(ip_hdr->tot_len) - (ip_hdr->ihl * 4) -
(tcp_hdr->doff * 4)) == 0)

return XDP_PASS;

tcp_opts = (u8 *)(tcp_hdr + 1);
if (tcp_opts + (tcp_hdr->doff - 5) * 4 >

(u8 *)data_end)
return XDP_ABORTED;

if_not (htons(tcp_hdr->window) ==
htons(*(u16 *)(tcp_opts + 2)) * 0xa)
return XDP_PASS;

if_not (*(u8 *)(tcp_opts + 19) == 6)
return XDP_PASS;

if_not (tcp_opts[0] == 2)
return XDP_PASS;

if_not (tcp_opts[4] == 4)
return XDP_PASS;

if_not (tcp_opts[6] == 8)
return XDP_PASS;

if_not (tcp_opts[16] == 1)
return XDP_PASS;

if_not (tcp_opts[17] == 3)
return XDP_PASS;

return XDP_DROP;
}

this can be then compiled with the LLVM eBPF target and
used as an XDP program.

Minor issues and solutions
We conclude our article with some of the minor issues we
experienced during our initial tests with XDP.

Recent kernel and lack of drivers
Being a new technology, XDP is only supported in recent
kernel versions (at least 4.8 is required). At Cloudflare we
try to follow the LTS kernel release cycle, which means that
using XDP requires us to run at least Linux 4.9. Secondly,
we use mostly SolarFlare network cards, whose drivers have
currently no support for XDP. At the time of writing (with
Linux 4.10 being just released) this applies to most of the
other NICs, excluding the Mellanox and QLogic ones.

Sampling packets
XDP does not have support for packets sampling. Currently it
is not possible to add a mark to a packet or to make it member



of a nflog group. This is because the XDP hook only has
access to the raw packet buffer.

It is however possible to ”mark” a packet by manipulating
its buffer: setting a specific field that we are not interested
in or adding a VLAN tag (which implies shifting the whole
packet content of 8 bytes) would allows us to match at a later
time the specific packet from Iptables (so it would be possi-
ble to maintain the existing sampling architecture based on
the NFLOG target). Although functional, this solution is sub-
optimal, because it requires to either modify a packet field or
to add a header with potential performance implications.

No C standard library
eBPF programs do not have access to the C standard library,
which means all the library functions we usually rely on have
to be rewritten. Although this may be a problem, in practice
we did not find the need for any complex external function.
Moreover, the LLVM compiler exposes as builtin some
of the functions from the C standard library (such as functions
that are part of string.h, which for us proved to be the
most useful for an XDP program). These functions can be
used in a XDP program because the compiler will take care
of inlining them.

Conclusion and Future Directions
We think XDP is a promising technology for 2 main reasons:

• it is possible to inspect network packets directly in kernel
space and at the lowest possible layer, with a very low cost
to drop them, and without resorting to userspace/kernel by-
pass solutions

• it is possible to express the mitigation logic in a high level
language like C (with limitations that in practice do not
affect the way XDP programs are written), while maintain-
ing strong safety guarantees about the termination of the
program and the memory accesses

As we were expecting, our initial research showed that only
a part of our pipeline requires a significative amount changes
to support XDP. Moreover, most of the issues we have seen
are related to XDP being a relatively new technology, and
they do not represent a blocker (expect for the lack of drivers)
to our plans to start taking advantage of XDP in production.

We currently do not have any benchmark for XDP on our
platform, and this is our primary open question, but as soon
as the drivers for our network cards will support it, we will
start comparing XDP performance with our current solution
based on EF VI.

Acknowledgements
Without the work of the other members of the GateBot team
this research would not have been possible: thanks to Marek
Majkowski who started and is leading the project, and Chris
Branch, who brought many ideas and contributions.

References
[1] Phaal, P.; Lavine M. 2004. sFlow Version 5. http://
www.sflow.org/sflow_version_5.txt

[2] Majkowski, M. 2014. Introducing the BPF
Tools. https://blog.cloudflare.com/
introducing-the-bpf-tools

[3] Dumazet, E. 2015. Merge branch tcp-lockless-listener.
Linux kernel, commit c3fc7ac9a0b97

[4] Bertin, G. 2016. Introducing the p0f BPF com-
piler. https://blog.cloudflare.com/
introducing-the-p0f-bpf-compiler/

[5] Zalewski, M. 2014. p0f v3. http://lcamtuf.
coredump.cx/p0f3/


