
Investigating Linux Network Behaviour Using Open-Source Network
Emulators

Brian Linkletter

Open-Source Routing and Network Simulation
Ottawa, Canada

mail@brianlinkletter.ca

Abstract
There are several open source, GUI based, network emulation
tools that are based on Linux containers or on virtual machines
that could be used to replicate network scenarios including
failures. This paper provides examples of trouble-shooting
network problems created in emulated networks using Linux
networking functions and introduces a sample of useful Linux
network emulation tools.

Keywords
Network Emulation; Network Simulation; CORE; VNX, GNS3;
UNetlab; Mininet; Cloonix; Open Source.

 Introduction
To acquire hands-on knowledge of Linux networking
operations , it is desirable to use a tool that can build
complex virtual networks on a single, modestly-powered
laptop computer. In this paper, we discuss several very
useful projects, each of which is suitable for a different
use-case.

Up-to-date information about open-source network
emulation tools is not readily available. A few papers have
been written that survey available tools but, since they
were written years ago, they do not cover new tools and, in
some cases, also cover projects that have been abandoned.

In this paper, I will provide a description of how to use a
popular Linux-based network emulation tool, the CORE
Network Emulator, to create network troubleshooting
scenarios that would allow users to test Linux network
operation procedures and that could potentially allow
developers to test Linux networking software in both an
ad-hoc manner and as part of a standardized virtual
networking test bed. I will also provide a survey of some of
the functional and well-supported open-source network
emulation tools for Linux networking experiments.

Demonstrating troubleshooting
Open-source network emulators enable developers and
users to rapidly create and emulate ad-hoc or scripted
network topologies based on nodes running real software.
In Figure 1, I show a screenshot of a network created using
the Common open research Emulator (CORE) with seven
routers and thirteen hosts and servers.

First, we may investigate the behavior of TCP in various
network conditions. We may show theoretical throughput
when link delays are zero and we may show more realistic
throughput when we configure delay on network links.
Next we may introduce link errors and use Wireshark to
view how TCP handles missing packets. We may also
investigate how routing protocols respond to changes in the
network topology.

Figure 1. Network topology map in CORE network emulator,
showing TCP traffic flowing between two nodes.

For example, we may run iperf3 to create a TCP flow
between two nodes in the emulated network: PC0-21 and
Server2-20.

With no delay configured in the emulated network, the
round trip delay across the virtual network is less than 0.1
ms. So we expect to see very high throughput with any
given TCP window size.

We first start an iperf3 server on Server2-20:

root@Server2-20:/tmp/pycore.43763/Server2-20.conf# iperf3 -s

Server listening on 5201

Then we run iperf3 on PC0-21 with a window size of 64K
(some output deleted):

<7/PC0-21.conf# iperf3 -c 10.0.2.20 -O 2 -t 5 -w 64K

[ID] Interval Transfer Bandwidth Retr

[4] 0.00-5.00 sec 10.6 GBytes 18.2 Gbits/sec 0 sender

[4] 0.00-5.00 sec 10.7 GBytes 18.3 Gbits/sec receiver

Next, we configure the links in the network with delay
adding up to 50 ms round trip time. When we run iperf3
again, we see significantly reduced TCP throughput, as
expected:

<97/PC0-21.conf# iperf3 -c 10.0.2.20 -O 2 -t 5 -w 64K

[ID] Interval Transfer Bandwidth Retr

[4] 0.00-5.00 sec 5.98 MBytes 10.0 Mbits/sec 4 sender

[4] 0.00-5.00 sec 6.04 MBytes 10.1 Mbits/sec receiver

We may perform more experiments where we change the
delay on multiple links in the network and observe the
affect on TCP throughput.

As another example, we may emulate a faulty link in the
network by configuring bit errors on a link in the network.
We may observe TCP messages using Wireshark and
monitor TCP retransmissions. We will configure one of the
links with a 30% error rate. This will cause multiple
missing packets.

The first indication of trouble would be greatly reduced
TCP throughput. Testing with iperf shows the
retransmissions:

<7/PC0-21.conf# iperf3 -c 10.0.2.20 -O 2 -t 5 -w 64K

[ID] Interval Transfer Bandwidth Retr

[4] 0.00-5.00 sec 93.3 KBytes 153 Kbits/sec 19 sender

[4] 0.00-5.00 sec 84.8 KBytes 139 Kbits/sec receiver

We observe in Figure 2 a Wireshark packet capture that
shows how TCP handles the missing packets by requesting
retransmissions

As a final example, we may observe the affects that
changes in the network topology have in the network. In
this example, if we configure OSPF in the network, we
may observe changes caused by changing link costs or by
causing a fault in the network by disabling OSPF on one of
the network links. We may observe OSPF updates using

Figure 2. Wireshark packet capture showing retransmissions due
to missing packets.

Wireshark or observe the effects by querying the OSPF
database on different nodes in the network.

For example, in the network shown in Figure 1, we may
observe that the OSPF database on Router2 is as follows:

Router2# show ip ospf database

 OSPF Router with ID (10.100.0.3)

 Router Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum Link count

10.100.0.1 10.100.0.1 206 0x8000000e 0xea43 5

10.100.0.2 10.100.0.2 811 0x8000000a 0x8fc8 4

10.100.0.3 10.100.0.3 815 0x80000009 0xf260 4

10.100.0.6 10.100.0.6 679 0x80000009 0xf234 4

10.100.0.7 10.100.0.7 680 0x80000009 0x83a4 4

10.100.0.9 10.100.0.9 717 0x8000000a 0xfb05 4

10.100.0.10 10.100.0.10 697 0x80000007 0x1533 3

 Net Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum

10.0.3.2 10.100.0.2 835 0x80000001 0xf208

10.0.4.2 10.100.0.1 854 0x80000001 0xf306

10.0.5.2 10.100.0.3 815 0x80000001 0xee07

10.0.11.1 10.100.0.10 697 0x80000001 0x15c8

10.0.12.1 10.100.0.7 680 0x80000001 0xeff3

10.0.13.2 10.100.0.9 717 0x80000001 0xeeee

10.0.14.2 10.100.0.9 757 0x80000001 0x0ccc

We may then introduce a change in the network by, for
example, disabling OSPF on Router9. This has the effect
of removing visibility of half the network. We may observe
the OSPF LS update in Wireshark, as shown in Figure 3,
and we may observe the change in the OSPF database on
Router2 as follows:

Figure 3. Wireshark packet capture showing OSPF update after
disabling OSPF on Router9

Router2# show ip ospf database

 OSPF Router with ID (10.100.0.3)

 Router Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum Link count

10.100.0.1 10.100.0.1 1026 0x80000010 0xe645 5

10.100.0.2 10.100.0.2 1596 0x8000000c 0x8bca 4

10.100.0.3 10.100.0.3 1547 0x8000000b 0xee62 4

 Net Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum

10.0.3.2 10.100.0.2 856 0x80000003 0xee0a

10.0.4.2 10.100.0.1 706 0x80000004 0xed09

10.0.5.2 10.100.0.3 1697 0x80000003 0xea09

Performance
When using network emulators, we must be aware that
performance may not match real-world performance where
resources on the host computer are limited. We must be
careful to create scenarios that do not exceed available
memory or processing power or our results will vary
greatly. However, by choosing emulators that use light-
weight virtualization technology such as Linux containers,
by limiting the number of virtual machines running on the
host computer, or by using a more powerful host computer,
it is possible to reproduce results using network emulators.
[5]

Open-Source Network Emulators
Below is a list of open-source network emulators discussed
in this paper that run on Linux and support Linux-based
virtual nodes, either containers or virtual machines.

• Cloonix
• Common Open Research Emulator (CORE)
• EVE (and UNetLab)
• GNS3
• IMUNES
• Mininet
• Netkit
• VNX

Cloonix
The Cloonix Network Emulator provides a simple and
easy-to-use graphical user interface. Cloonix uses
QEMU/KVM to create virtual machines. Cloonix provides
a wide variety of pre-built file systems that can be used as
virtual machines and provides simple instructions for
creating other virtual machine root file systems. Cloonix
has an active development team, who update the tool every
two or three months and who are very responsive to user
input.

Users and developers who prefer to use Linux shell scripts
will be comfortable working with the text-based Cloonix
topology files. Cloonix provide a command-line interface
that can be scripted using standard shell scripts. Cloonix
will export a network scenario as a shell script. Users may
edit the shell scripts to create fully-configured setup scripts
that, when started, will build and configure complex Linux
networks. Since Cloonix uses virtual machines, it is
appropriate for testing custom kernels and other Linux
router distributions.

Common Open Research Emulator
The Common Open Research Emulator (CORE) provides
a GUI interface and uses the network namespaces
functionality in Linux. [1] This allows CORE to start up a
large number of virtual machines quickly, because each
node uses minimal resources. CORE supports the
emulation of fixed and mobile networks.

CORE will run on Linux and on FreeBSD. It is written in
Python and users may modify the program to support
additional network services.

The CORE topology files are readable text and may be
saved as a standard text file or in XML format. Users may
edit the topology files to create fully-configured, complex
network scenarios. Core services are implemented in
Python so users may modify CORE services to create new
ones.

Since CORE uses Linux namespaces to implement the
nodes in the virtual network, users must ensure that they
specify which parts of the file system need to be mounted
in a mount namespace for each node.

EVE and UNetlab
EVE and UNetLab are network emulators that support
virtualized commercial router images (such as Cisco and
NOKIA) and open-source routers such as Linux. They use

Dynamips and IOS-on-Linux to support Cisco router and
switch images, and KVM/QEMU to support all other
devices. Each is available as a virtual machine image and
may also be installed on a dedicated server running Ubuntu
Linux.

EVE-NG is the next-generation of UNetlab. Both UNetLab
and EVE-NG are open-source and post source code on
GitHub for UNetLab and on GitLab for EVE-NG.

Users must perform some extra configuration steps to
enable EVE to support fully functioning Linux systems.

GNS3
GNS3 is a graphical network simulator focused mostly on
supporting Cisco and Juniper software. GNS3 has a large
user base, made up mostly of people studying for Cisco
exams, and there is a lot of information freely available on
the web about using GNS3 to simulate Cisco equipment.
However, comprehensive information about using GNS3 to
support Linux nodes is only recently being developed, due
to enthusiasm among network engineers for software-
defined networking exercises.

GNS3 can also be used to simulate a network composed
exclusively of VirtualBox and/or KVM/QEMU virtual
machines running open-source software. GNS3 provides a
variety of prepared open-source virtual appliances, and
users can create their own.

IMUNES
The Integrated Multi-protocol Network
Emulator/Simulator (IMUNES) runs on both the FreeBSD
and Linux operating systems. It uses the kernel-level
network stack virtualization technology provided by
FreeBSD. It uses Docker containers and Open vSwitch on
Linux. [2]

IMUNES supports a graphical user interface. It works well
and offers good performance, even when running IMUNES
in a VirtualBox virtual machine.

Mininet
Mininet is designed to support research in Software
Defined Networking (SDN) technologies. It uses Linux
network namespaces as its virtualization technology to
create virtual nodes. [3] The web site indicates that the tool
can support thousands of virtual nodes on a single
operating system. Mininet is most useful to researchers
who are building SDN controllers and need a tool to verify
the behavior and performance of SDN controllers.
Knowledge of the Python scripting language is very useful
when using Mininet.

The Mininet project provides excellent documentation and,
judging from the activity on the Mininet mailing list, the
project is actively used by a large community of
researchers.

Some researchers have created forks of Mininet that focus
on specific technologies, in addition to OpenFlow-based
SDN. other projects based on Mininet are:

• Mini-NDN
• Mini-CCNx
• Mininet-WiFi
• ESCAPE

VNX
VNX supports two different virtualization techniques:
LXC containers and KVM virtual machines. It also
supports FreeBSD virtual machines. [6] It uses an XML-
style scripting language to define the virtual network. It
also supports chaining multiple physical workstations
together to support distributed virtual labs that operate
across multiple physical workstations. It is supported by a
small but active community.

To create a VNX scenario, users edit a topology file in a
specific format. This makes VNX harder to get started with
than other network emulators that provide a GUI.

The VNX project provides a generous repository of pre-
packaged networking scenarios. These scenarios make
VNX attractive as a teaching tool.

Netkit
Netkit uses User Mode Linux as a virtualization
technology. In a similar fashion as VNX, above, Netkit
users must build a set of lab description files in located in
directories related to the topology and using a custom
network description language. [4] The lab description files
may run Netkit commands that configure and control with
the virtual nodes in the network topology.

Netkit also provides a generous repository of pre-packaged
networking scenarios and also documents each scenario in
a way that is meant to support an educational environment.

Other Network Emulators
Below is a list of more open-source network emulator
projects that are not described in this paper but are still
active projects worth investigating. They are either
relatively new, based on older visualization technology, or
are dedicated to a special purpose.

• OFNet
• Shadow
• NetMirage
• Yet Another Network Simulator
• Marionnet

Conclusion
I discussed how open-source network emulators may be
used to experiment with failure scenarios in a virtual
network. I also briefly reviewed the open-source network
emulators currently available.

References
1. Comparison of CORE Network Emulation Platforms,
Proceedings of IEEE MILCOM Conference, 2010, pp.864-
869.
2. A network testbed for commercial telecommunications
product testing
D. Salopek, V. Vasic, M. Zec, M. Mikuc, M. Vasarevic, V.
Koncar; in Proceedings of the Softcom 2014 22th
International Conference on Sotware, Telecommunications
and Computer Networks, Split, September 2014.
3. Bob Lantz, Brandon Heller, and Nick McKeown. 2010.
A network in a laptop: rapid prototyping for software-
defined networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks
(Hotnets-IX). ACM, New York, NY, USA, , Article 19
4. Maurizio Pizzonia and Massimo Rimondini. 2008.
Netkit: easy emulation of complex networks on
inexpensive hardware. In Proceedings of the 4th
International Conference on Testbeds and research
infrastructures for the development of networks &
communities (TridentCom '08). ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels,
Belgium, Belgium, , Article 7
5. Nikhil Handigol, Brandon Heller, Vimalkumar
Jeyakumar, Bob Lantz, and Nick McKeown. 2012.
Reproducible network experiments using container-based
emulation. In Proceedings of the 8th international
conference on Emerging networking experiments and
technologies (CoNEXT '12). ACM, New York, NY, USA,
253-264.
6. D. Fernández, F. J. Ruiz, L. Bellido, E. Pastor, O. Walid
and V. Mateos, Enhancing Learning Experience in
Computer Networking through a Virtualization-Based
Laboratory Model, International Journal of Engineering
Education Vol. 32, No. 6, pp. 2569–2584, 2016.

Bibliography
IMUNES web site
https://github.com/imunes/imunes

Cloonix web site
http://virtual-network-kvm.net/

Mininet web site
http://mininet.org/

Mininet-wifi web site
http://www.ramonfontes.com/mininet-wifi/

VNX web site
http://www.dit.upm.es/vnx

Netkit web site
http://wiki.netkit.org

GNS3 Commnity
https://www.gns3.com/

EVE web site
http://www.eve-ng.net/

OFNet web site
http://sdninsights.org/

Shadow network emulator wen site
https://shadow.github.io/

Marionnet web site
http://www.marionnet.org/site/index.php/en/

Netmirage web site
https://crysp.uwaterloo.ca/software/netmirage/

Yet Another Network Simulator web site
https://github.com/kennethjiang/YANS

Mini-NDN web site
https://github.com/named-data/mini-ndn

Mini-CCNx web site
https://github.com/chesteve/mn-ccnx/wiki

Mininet-WiFi web site
https://github.com/intrig-unicamp/mininet-wifi

ESCAPE web site
http://sb.tmit.bme.hu/mediawiki/index.php/ESCAPE

Open-Source Routing and Network Simulation blog
http://www.brianlinkletter.com

Author Biography
Brian Linkletter is a network professional with 25 years
experience. He writes a blog about open-source networking
and network simulation. He currently works for a large
telecommunications equipment vendor and is based in
Ottawa, Canada.

	Introduction
	Demonstrating troubleshooting
	Performance

	Open-Source Network Emulators
	Cloonix
	Common Open Research Emulator
	EVE and UNetlab
	GNS3
	IMUNES
	Mininet
	VNX
	Netkit
	Other Network Emulators

	Conclusion
	References
	Bibliography
	Author Biography

