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The Peaceful operation

When we’re running out of resources ( cpu, memory, disk ), 
Just add new( or additional ) resources to existing one. 
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The Growth(I)

VM creation speed is accelerating



The Growth(II)

Spend more than 45M krane ( $45,000) per month
– this also increased.

1	krane =	1	Won	(	$0.001) • Using similar pricing with AWS EC2
• Network/Disk usage not included 



The Growth(III)

Growth is accelerating
- No. of Engineer is growing
- New Pilot services or experiments are growing. 
- The resources depletion speed is accelerating à this simply make more work to resource 

management teams 
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The Growth(IV)

Scale, The only driving force disrupt everything. 
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The Growth – Lesson learned

Growth doesn’t come alone
– Infra growth includes scale-up , scale-out as well
– Scale-up includes these

• Add Server, Storage, Switches
• Add more power facility to supply juice fluently
• This is not that difficult.

– Scale-out include these
• Add New Datacenters, New Availability Zones
• This is nightmare!

This leads radical changes over everything
– The way of preparing, provisioning
– The way of monitoring, logging, developing
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Some Numbers

1021 tenants

662 pull request since 2014.9

136 VMs are created/deleted per day



Some information about kakao Openstack

openstack upgraded from grizzly to  Liberty
total 4Region

additional service Heat/Trove/Sahara/Octavia



The Growth – Lesson learned, Openstack (2)

Resources for Openstack finally comes to be exhausted
– CPU, Memory, Storage always experience shortages. 
– They have skewness. 
– Sometimes, CPU depleted. Sometimes, Storage depleted.

• All resources are able to be re-balanced. 
• you can migration clients’ VM ( image , volume ) 

– IP is also Resources. 
• Very limited than our expectations

– No of IP counts is limited. 
– Location of IP also is limited. 

• Managing these Resources is getting tougher issue.
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(a.k.a
Rack)

OpenStack Neutron Network

We’ve been using Provider Network (VLAN)
– ML2 plugin
– From OVS à LinuxBridge. 
– Network Team plan/setup networks (the VLAN, IP[subnet], Gateways)
– Mapping availability zone / Neutron Network to that Physical networks
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Resource Imbalance

After Running multiple Available Zones
– Experiencing resource imbalance between zones, naturally
– Filter Scheduling won’t helpful.
– Migration is a proper solution. ( add extra resource is better If possible )
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Resource Imbalance & Remedies 

Develop Network Count filter
– Check Remaining IP count for each zone, treat ip count as resource
– Select the zone which have more ip count
– but experiencing harder issue 

• Setup more 2Vlan ( and also trunking ) on same ethernet
• leading heterogeneous policy which cause complex configurations
• Still, Migration VM through zones with ip unchanged is not possible. 
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Rationale 

Rethinking about Connectivity
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Rationale 

Rethinking about Connectivity (Overlay)
– it solve remote link layer separation issue. 
– Still have issue with IP management. and Gateway ( Packet Forwarding) 
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Remedy , Version 2.0

we need to thinks of those requirement
– IP movement inter-rack, inter-zone, inter-dc(?)
– IP resource imbalance
– Fault Resilience
– Dynamically check status of network
– Simple IP Resource Planning and Management



Router

We thinks Router as best candidate 
– It dynamically detects and exchanges changes. (via dynamic routring protocol)
– It is highly distributed. 
– It have HA ( e.g. VRRP)
– the issue is that most of time routing is done in ranges (a.k.a Subnet)

• Because of Memory and CPU issue 



Finally, Come to route only IP

Generally, Known as /32 network.

– No L2 (link) consideration needed anymore ( no subnet ) 
– With Dynamic Routing Protocol,  it move every where.
– Simple IP planning ( Just think of IP ranges )
– It’s very Atomic Resource, it keeps its IP after migration through zones

10.0.0.1 / 32  or 
IP 10.0.0.1  netmask 255.255.255.255



How it setup

1. install nova/neutron agent.
2. create neutron network ( name: freenet, subnet: 10.10.100.0/24)
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How it setup

1. install nova/neutron agent.
2. create neutron network ( name: freenet, subnet: 10.10.100.0/24)
3. user create VM
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How it works

1. install nova/neutron agent.
2. create neutron network ( name: freenet, subnet: 10.10.100.0/24)
3. user create VM
4. update Routing(with Dynamic routing protocol)
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Phase 1

Use RIP and OSPF
– Heterogeneous setting will be burden
– Using Default GW as eth1 even for compute node. 

Management and service network mixed. 
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Phase 2

Use BGP and switch namespace
– Isolating vm’s traffic using switch namespace.
– adopting same dynamic routing scheme to compute node 
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What we solved? 
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What we solve?

Simple IP planning
– only IP ranges matter. (no more VLAN, IP subnet, Router planning)

Resource imbalancing
– No chance of IP imbalancing. 

Fault Resilience
– If one router gone, it propagated by Dynamic routing protocol to other router

Distributed
– deciding routing path is very distributed. No single point of failure. 
– scale out nature. 



What we still have to solve?

Still many issue
– Apply this to physical server
– Making Router setup by API ( REST, RPC) using seed BGP( only advertising)
– ACL propagation using API ( e.g. Flowspec)
– Shared storage base service



Performance Test VMs to VMs 



Compute Node’s router status



Application of  /32bit network: /32bit route + DNAT 
à 1:1 NAT (A.K.A FloatingIP )
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Application of  /32bit network: ECMP + DNAT 
à Scalable Loadbalancer
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Application of  /32bit network: 
Multiple Routing Entry ( AKA, Fixed IPs) + Container Bridge Network  
à Scalable Container Network
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Routable	IP	to	Container:
• Can	use	legacy	IP	base	Monitoring
• No	Overlay	(	No	complexity	)



Q&A
Thanks


