
L.T.H.

Scalable	VM	and	Container	Networking	
using	/32bit	subnets	and	BGP	routing	

Andrew Yongjoon Kong

2nd largest	
search	and	
portal

The Peaceful operation

When we’re running out of resources (cpu, memory, disk),
Just add new(or additional) resources to existing one.

System
team

Network
teamCMDB API

New servers

New servers

New servers

New servers nkaos
(baremetal
provisioner)

provisioned servers

provisioned servers

provisioned servers

provisioned server

Chef server
Our

Team

NSDB
Central

monitoring
tree

switches, router, vlans

The Growth(I)

VM creation speed is accelerating

The Growth(II)

Spend more than 45M krane ($45,000) per month
– this also increased.

1	krane =	1	Won	($0.001) • Using similar pricing with AWS EC2
• Network/Disk usage not included

The Growth(III)

Growth is accelerating
- No. of Engineer is growing
- New Pilot services or experiments are growing.
- The resources depletion speed is accelerating à this simply make more work to resource

management teams

System
team

Network
team

New servers
New servers
New servers
New servers

Baremetal
Provisioner

CMDB API

New servers
New servers
New servers
New servers

Chef server
Our

Team

NSDBCentral
monitoring tree

New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers

The Growth(IV)

Scale, The only driving force disrupt everything.

System
team

Network
teamCMDB API

NSDBCentral
monitoring tree

Chef
server

New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers

Chef server
New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers
New servers
New servers
New servers
New servers

Chef server
New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers

New servers
New servers
New servers
New servers
New servers
New servers
New servers
New servers

Baremetal
Provisioner

Our
Team

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

The Growth – Lesson learned

Growth doesn’t come alone
– Infra growth includes scale-up , scale-out as well
– Scale-up includes these

• Add Server, Storage, Switches
• Add more power facility to supply juice fluently
• This is not that difficult.

– Scale-out include these
• Add New Datacenters, New Availability Zones
• This is nightmare!

This leads radical changes over everything
– The way of preparing, provisioning
– The way of monitoring, logging, developing

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Chef server

New servers
New servers
New servers
New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

New servers

Some Numbers

1021 tenants

662 pull request since 2014.9

136 VMs are created/deleted per day

Some information about kakao Openstack

openstack upgraded from grizzly to Liberty
total 4Region

additional service Heat/Trove/Sahara/Octavia

The Growth – Lesson learned, Openstack (2)

Resources for Openstack finally comes to be exhausted
– CPU, Memory, Storage always experience shortages.
– They have skewness.
– Sometimes, CPU depleted. Sometimes, Storage depleted.

• All resources are able to be re-balanced.
• you can migration clients’ VM (image , volume)

– IP is also Resources.
• Very limited than our expectations

– No of IP counts is limited.
– Location of IP also is limited.

• Managing these Resources is getting tougher issue.

Zone1
(a.k.a
Rack)

OpenStack Neutron Network

We’ve been using Provider Network (VLAN)
– ML2 plugin
– From OVS à LinuxBridge.
– Network Team plan/setup networks (the VLAN, IP[subnet], Gateways)
– Mapping availability zone / Neutron Network to that Physical networks

VLAN.1

eth0

eth1

brqxxx

eth1.1

tapxxx

vm

eth0

K
V
M

Hypervisor

Zone2
(a.k.a
Rack)

VLAN.2

Zone3
(a.k.a
Rack)

VLAN.3

Zone1

1	CPU
1	storage
No	IP	
Left

Resource Imbalance

After Running multiple Available Zones
– Experiencing resource imbalance between zones, naturally
– Filter Scheduling won’t helpful.
– Migration is a proper solution. (add extra resource is better If possible)

VLAN.1

Zone2

No	CPU
No	

Storage
1	IP	

VLAN.2

Zone3

VLAN.3

Hey Openstack,
Create 1 VM (1cpu, 1 IP, 1 Storage)

openstack
scheduler

x

Resource Imbalance & Remedies

Develop Network Count filter
– Check Remaining IP count for each zone, treat ip count as resource
– Select the zone which have more ip count
– but experiencing harder issue

• Setup more 2Vlan (and also trunking) on same ethernet
• leading heterogeneous policy which cause complex configurations
• Still, Migration VM through zones with ip unchanged is not possible.

Zone1

VLAN.1
eth0

eth1

brqxxx eth1.1
tapxxxvm1

eth0

K
V
M

Hypervisor

brqYYY eth1.10
vm1

eth0
VLAN	
trunk

VLAN.10

broadcast
domain2

Rationale

Rethinking about Connectivity

Application

TCP

IPv4

ethernet
driver

broadcast domain

ARP Table

SRC IP mac eth0

Router
IP

mac eth0

Application

TCP

IPv4

ethernet
driver

ARP Table

dest IP mac eth0

Router
IP

mac eth0

broadcast termination
A.K.A Router

same
subnet

different
subnet

client destination

Rationale

Rethinking about Connectivity (Overlay)
– it solve remote link layer separation issue.
– Still have issue with IP management. and Gateway (Packet Forwarding)

Application

TCP

IPv4

ethernet
driver

broadcast domain

ARP Table

SRC IP mac eth0

Router
IP

mac eth0

Application

TCP

IPv4

ethernet
driver

ARP Table

dest IP mac eth0

Router
IP

mac eth0

tun
nel

broadcast domain
tun
nel

Remedy , Version 2.0

we need to thinks of those requirement
– IP movement inter-rack, inter-zone, inter-dc(?)
– IP resource imbalance
– Fault Resilience
– Dynamically check status of network
– Simple IP Resource Planning and Management

Router

We thinks Router as best candidate
– It dynamically detects and exchanges changes. (via dynamic routring protocol)
– It is highly distributed.
– It have HA (e.g. VRRP)
– the issue is that most of time routing is done in ranges (a.k.a Subnet)

• Because of Memory and CPU issue

Finally, Come to route only IP

Generally, Known as /32 network.

– No L2 (link) consideration needed anymore (no subnet)
– With Dynamic Routing Protocol, it move every where.
– Simple IP planning (Just think of IP ranges)
– It’s very Atomic Resource, it keeps its IP after migration through zones

10.0.0.1 / 32 or
IP 10.0.0.1 netmask 255.255.255.255

How it setup

1. install nova/neutron agent.
2. create neutron network (name: freenet, subnet: 10.10.100.0/24)

eth1

eth0

Compute node

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agent

dhcp-server
process

10.10.100.1

How it setup

1. install nova/neutron agent.
2. create neutron network (name: freenet, subnet: 10.10.100.0/24)
3. user create VM

eth1

eth0

Compute node

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agent

dhcp-server
process

10.10.100.1

linux bridge

vm

IP:10.10.100.2/32
GW:	10.10.100.1

Controller

How it works

1. install nova/neutron agent.
2. create neutron network (name: freenet, subnet: 10.10.100.0/24)
3. user create VM
4. update Routing(with Dynamic routing protocol)

eth1

eth0

Compute node

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agent

dhcp-server
process
10.10.100.1

linux bridge

vm

IP:10.10.100.2/32
GW:	10.10.100.1

Controller

192.1.1.201
Routing Table

Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.2/32
to 10.10.100.1

Routing Table

1 10.100.10.2/32 via 192.1.1.201

advertising:
via Dynamic Routing Protocol

192.1.1.202

Phase 1

Use RIP and OSPF
– Heterogeneous setting will be burden
– Using Default GW as eth1 even for compute node.

Management and service network mixed.

eth1

eth0

Compute node

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agent

dhcp-server
process
10.10.100.1

linux bridge

vm

IP:10.10.100.2/32
GW:	10.10.100.1

Controller

192.1.1.201
Routing Table

Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.2/32
to 10.10.100.1

Routing Table

1 10.100.10.2/32 via 192.1.1.201

RIP

192.1.1.202 OSPF

Phase 2

Use BGP and switch namespace
– Isolating vm’s traffic using switch namespace.
– adopting same dynamic routing scheme to compute node

eth1

Compute node

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agent

dhcp-server
process
10.10.100.1

linux bridge

vm

IP:10.10.100.2/32

Controller

192.1.1.201
Routing Table

Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.2/32
to 10.10.100.1

Routing Table

1 10.100.10.2/32 via 192.1.1.201

iBGP

192.1.1.202 eBGP

Switch Namespace

global name space

Routing Table
Default GW x.x.x.x eth0

eth0

What we solved?

Compute node2

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agentlinux bridge

Switch Namespace

global name space

Compute node1

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agentlinux bridge

Switch Namespace

global name space

AZ1

Compute node2

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agentlinux bridge

Switch Namespace

global name space

Compute node1

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agentlinux bridge

Switch Namespace

global name space

AZ2

Compute node2

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agentlinux bridge

Switch Namespace

global name space

Compute node1

nova-compute

neutron-
linuxbridge-agent

neutron-dhcp-agentlinux bridge

Switch Namespace

global name space

AZ3

tor1 tor2 tor3

vm10.10.100.2/32

Routing Table

1 10.100.10.2/32 via tor1

rt1

rt2

Routing Table

1 10.100.10.2/32 via RT1

rt3

rt4

rt5

rt6

Routing Table

1 10.100.10.2/32 via RT3

Routing Table

1 10.100.10.2/32 via tor2

What we solve?

Simple IP planning
– only IP ranges matter. (no more VLAN, IP subnet, Router planning)

Resource imbalancing
– No chance of IP imbalancing.

Fault Resilience
– If one router gone, it propagated by Dynamic routing protocol to other router

Distributed
– deciding routing path is very distributed. No single point of failure.
– scale out nature.

What we still have to solve?

Still many issue
– Apply this to physical server
– Making Router setup by API (REST, RPC) using seed BGP(only advertising)
– ACL propagation using API (e.g. Flowspec)
– Shared storage base service

Performance Test VMs to VMs

Compute Node’s router status

Application of /32bit network: /32bit route + DNAT
à 1:1 NAT (A.K.A FloatingIP)

eth1
Compute node1

linux bridge

vm

IP:10.10.100.2/32

192.1.1.201
Routing Table
Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.2/32
to 10.10.100.1

connected dest 192.168.100.2

Routing Table

1 10.10.100.2/32 via 192.1.1.201

2 10.10.100.3/32 via 192.168.1.202

3 192.168.100.2/32 via
192.168.1.201

192.1.1.202

Switch
Namespace

global name
space

IPTable

DNAT Dest 192.168.100.2 is forwarded to 10.
10.100.2

Compute	Node	Router

Application of /32bit network: ECMP + DNAT
à Scalable Loadbalancer

eth1
Compute node1

linux bridge

LB

IP:10.10.100.2/32

192.1.1.201
Routing Table
Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.2/32
to 10.10.100.1

connected dest 192.168.100.2

192.1.1.202

Switch
Namespace

global name
space

IPTable

DNAT Dest 192.168.100.2 is forwarded to 10.
10.100.2

Compute	Node	Router

eth1
Compute node2

linux bridge

LB

IP:10.10.100.3/3
2

192.1.1.202
Routing Table
Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.3/32
to 10.10.100.1

connected dest 192.168.100.2

Switch
Namespace

global name
space

IPTable

DNAT Dest 192.168.100.2 is forwarded to 10.
10.100.3

Compute	Node	Router

TOR1 TOR2

Aggregation	

VIP: 192.168.100.2 is ECMPed

Application of /32bit network:
Multiple Routing Entry (AKA, Fixed IPs) + Container Bridge Network
à Scalable Container Network

eth1
Compute node1

linux bridge

IP:10.10.100.2/32

192.1.1.201

Routing Table

Default GW 192.168.1.1 eth1

Host Route dest 10.10.100.3~33/32
to 10.10.100.1

Routing Table

1 10.10.100.3~33/32 via 192.168.1.201
192.1.1.202

Switch
Namespace

global name
space

Compute	Node	Router

vm linux bridge

Container Container

Routable	IP	to	Container:
• Can	use	legacy	IP	base	Monitoring
• No	Overlay	(No	complexity)

Q&A
Thanks

