
What is an L3 Master Device?

David Ahern
Cumulus Networks  

Mountain View, CA, USA
dsa@cumulusnetworks.com

Abstract
The L3 Master Device (l3mdev) concept was introduced to the
Linux networking stack in v4.4. While it was created for the VRF
implementation, it is a separate API that can be leveraged by
other drivers that want to influence FIB lookups or want to
manipulate packets at layer 3. This paper discusses the l3mdev
implementation, the hooks in the IPv4 and IPv6 networking stack
and the driver API, why they are needed and what opportunities
they provide to network drivers. The VRF driver is used as an
example of what can be done in each of the driver hooks.

Keywords
l3mdev, VRF, IPv4, IPv6

 Introduction
The L3 Master Device (l3mdev for short) idea evolved
from the initial Virtual Routing and Forwarding (VRF)
implementation for the Linux networking stack. The
concept was created to generalize the changes made to the
core IPv4 and IPv6 code into an API that can be leveraged
by devices that operate at layer 3 (L3).

The primary motivation for l3mdev devices is to create L3
domains that correlate to a specific FIB table (Figure 1).
Network interfaces can be enslaved to an l3mdev device
uniquely associating those interfaces with an L3 domain.
Packets going through devices enslaved to an l3mdev
device use the FIB table configured for the device for
routing, forwarding and addressing decisions. The key here
is the enslavement only affects layer 3 decisions.

Drivers leveraging the l3mdev operations can get access to
packets at layer 3 similar to the rx-handler available to
layer 2 devices such as bridges and bonding. Drivers can
use the hooks to implement device-based networking
features that apply to the entire L3 domain.

Userspace programs can use well-known POSIX APIs to
specify which domain to use when sending packets. This is
required since layer 3 network addresses and routes are
local to the L3 domains.

Finally, administration, monitoring and debugging for
l3mdev devices follows the existing paradigms for Linux
networking.

The code references in this paper are for net-next in what
will be the 4.9 kernel. Older kernels operate similarly
though the driver operations and hooks into the kernel are
slightly different. As of this writing there are 2 drivers
using the l3mdev API: VRF and IPvlan. This paper uses
the VRF driver for examples of what can be done with the
driver operations.

Layer 3 Master Devices
The l3mdev feature is controlled by the kernel
configuration option CONFIG_NET_L3_MASTER_DEV
under Networking support -> Networking options. It must
be set to enable drivers that leverage the infrastructure
(e.g., VRF and IPvlan).

L3 master devices are created like any other network
device (e.g., RTM_NEWLINK and ‘ip link add …’);
required attributes are a function of the device type. For
example, a VRF device requires a table id that is associated
with the VRF device while IPvlan does not since it does
not use the FIB table aspect of l3mdev.

l3mdev devices have the IFF_L3MDEV_MASTER flag set
in priv_flags; devices enslaved to an l3mdev device have
IFF_L3MDEV_SLAVE set. These flags are leveraged in
the fast path to determine if l3mdev hooks are relevant for
a particular flow using the helpers netif_is_l3_master and
netif_is_l3_slave.

The l3mdev driver operations are defined in include/net/
l3mdev.h, struct l3mdev_ops. As of v4.9 the handlers are:

 l3mdev_fib_table – returns FIB table for L3 domain,

 l3mdev_l3_rcv – Rx hook in network layer,

 l3mdev_l3_out – Tx hook in network layer, and

 l3mdev_link_scope_lookup – route lookup for IPv6 link
local and multicast addresses.

Drivers using the l3mdev infrastructure only need to
implement the handlers of interest. For example, IPvlan
only implements the l3mdev_l3_rcv hook for its l3s mode,
while the VRF driver implements all of them.

The l3mdev_fib_table and l3mdev_link_scope_lookup are
discussed in the next section. The l3mdev_l3_rcv and

l3mdev_l3_out operations are discussed in the Layer 3
Packet Processing section.

Layer 3 Routing and Forwarding
The primary motivation for Layer 3 master devices is to
create L3 domains represented by an associated FIB table
(Figure 1). Network interfaces can be enslaved to the
l3mdev device making them part of the domain for layer 3
routing and forwarding decisions. A key point is that the
domains and enslaving an interface to those domains affect
only layer 3 decisions. The association with an l3mdev
device has no impact on Layer 2 applications such as lldpd
sending and receiving packets over the enslaved network
interfaces (e.g., for neighbor discovery).

Network Addresses
Network addresses for interfaces enslaved to an l3mdev
device are local to the L3 domain. When selecting a source
address for outgoing packets, only addresses associated
with interfaces in the L3 domain are considered during the
selection process. By extension this means applications
need to specify which domain to use when communicating
over IPv4 or IPv6. This is discussed in the ‘Userspace API’
section below.

Since the l3mdev device is also a network interface, it too
can have network addresses (e.g, loopback addressing
commonly used for routing protocols). Those addresses are
also considered for source address selection on outgoing
connections. The l3mdev device is treated as the loopback
device for the domain, and and the IPv4 stack allows the
loopback address (127.0.0.1) on an l3mdev device.

FIB Tables
The FIB table id for an l3mdev device is retrieved using
the l3mdev_f ib_table dr iver opera t ion . S ince
l3mdev_fib_table is called in fast path, the operation
should only return the table id for the device presumably
stored in a private struct added to the net_device.

Local and connected routes for network addresses added to
interfaces enslaved to an l3mdev device are automatically
moved to the FIB table associated with the l3mdev device

when the network interface is brought up. This means that
the l3mdev FIB table has all routes for the domain – local,
broadcast, and unicast. Additional routes can be added to
the FIB table either statically (e.g, ip route add table N) or
using protocol suites such as quagga.

Policy Routing and FIB Rules
The Linux networking stack has supported policy routing
with FIB rules since v2.2. Rules can use the oif (outgoing
interface index) or iif (incoming interface index) to direct
lookups to a specific table. The l3mdev code leverages this
capability to direct lookups to the table associated with the
master device.

For this to work the flow structure, which contains
parameters to use for FIB lookups, needs to have either oif
or iif set to the interface index of the l3mdev device. This
is accomplished in multiple ways: for locally originated
traffic the oif is originally set based on either the socket
(sk_bound_dev_i f o r uc_index) or cmsg and
IP_PKTINFO. For responses and forwarded traffic, the
original iif or oif are based on the ingress device.

l3mdev has several operations for updating the oif or iif
from an enslaved interface to the L3 master device.
Generically, this is done in the IPv4 and IPv6 stacks with
c a l l s t o l 3 m d e v _ u p d a t e _ f l o w b e f o r e c a l l i n g
fib_rules_lookup. Unfortunately, there are several special
cases where the oif or iif is not set in the flow. These have
to be handled directly with calls to l3mdev_master_ifindex
and related helper functions.

FIB rules can be written per l3mdev device (e.g., an oif
and/or iif rule per device) to direct lookups to a specific
table:

 $ ip rule add oif blue table 1001
 $ ip rule add iif blue table 1001

Alternatively, a single l3mdev rule can be used to direct
lookups to the table associated with the device:

 $ ip rule add l3mdev pref 1000

The l3mdev rule was designed to address the scalability
problems of having 1 or 2 rules per device since the rules
are evaluated linearly on each FIB lookup. With the
l3mdev rule, a single rule covers all l3mdev devices as the
table id is retrieved from the device.

If an l3mdev rule exists, l3mdev_fib_rule_match is called
to determine if the flow structure oif or iif references an
l3mdev device. If so, the l3mdev_fib_table driver
operation is used to retrieve the table id. It is saved to the
fib_lookup_arg, and the lookup is directed to that table.

The l3mdev rule is specified by adding the FRA_L3MDEV
attribute with a value of 1 in RTM_NEWRULE and
RTM_DELRULE messages.

The VRF driver adds the l3mdev rule with a preference of
1000 when the first VRF device is created. That rule can be
deleted and added with a different priority if desired.

IPv6 link scope
Special consideration is needed for IPv6 linklocal and
multicast addresses. For these addresses, the flow struct
can not be updated to the l3mdev device as the enslaved
device index is needed for an exact match (e.g., the
linklocal address for the specific interface is needed). In
this case, the l3mdev device needs to do the lookup
directly in the FIB table for the device. The VRF driver and
its function vrf_link_scope_lookup is an example of how
to do this.

Also, IPv6 linklocal addresses are not added to l3mdev
devices by the kernel, and the stack does not insert IPv6
multicast routes for the devices. The VRF driver for
example specifically fails route lookups for IPv6 linklocal
or multicast addresses on a VRF device.

Layer 3 Packet Processing
Packets are passed to l3mdev devices on ingress and egress
if the driver implements the l3mdev_l3_rcv and
l3mdev_l3_out handlers.

Rx
Packets are passed to the l3mdev driver in the IPv4 or IPv6
receive handlers af ter the net f i l te r hook for
NF_INET_PRE_ROUTING (Figure 2). At this point the
IPv4 and IPv6 receive functions have done basic sanity
checks on the skb, and the skb device (skb->dev) is set to
the ingress device. The l3mdev driver can modify the skb
or its metadata as needed based on relevant features. If it
returns NULL, the skb is assumed to be consumed by the
l3mdev driver and no further processing is done. The
l3mdev operation is called before invoking the input
function for the dst attached to the skb which means the
l3mdev driver can set (or change) the dst if desired hence
altering the next function called on it.

The l3mdev_l3_rcv hook is the layer 3 equivalent to the
rx_handler commonly used for layer 2 devices such as
bonds and bridges. By passing the skb to the l3mdev
handler in the networking stack at layer 3, drivers do not
need to duplicate network layer checks on skbs.
Furthermore, it allows the IPv4 and IPv6 layers to save the
original ingress device index to the skb control buffer prior
to calling the l3mdev_rcv_out hook. This is essential for
datagram applications that require the ingress device index
and not the l3mdev index (the latter is easily derived from
the former via the master attribute).

Prior to the l3mdev hooks, drivers relied on the rx-handler
and duplicating network layer code. That design had other
limitations such as preventing a device with a macvlan or
ipvlan from also being placed in an L3 domain. With this
l3mdev hook both are possible (e.g., eth2 can be assigned
to a VRF and eth2 can be the parent device for macvlans).

Figure 3 shows the operations done by the VRF driver. It
uses the l3mdev receive functions to switch the skb device
to its device to influence socket lookups, and the skb is run
through the network taps allowing tcpdump on a VRF
device to see all packets for the domain.

As mentioned earlier, IPv6 linklocal and multicast
addresses need special handling. VRF uses the
l3mdev_ip6_rcv function to do the ingress lookup directly
in the associated FIB table and set the dst on the skb.

The skb i s then run through NF_HOOK for
NF_INET_PRE_ROUTING. This allows netfilter rules
that look at the VRF device. (Additional netfilter hooks
may be added in the future.)

Tx
For transmit path, packets are passed to the l3mdev driver
in the IPv4 or IPv6 layer in the local_out functions before
the netfilter hook for NF_INET_LOCAL_OUT. As with
the Rx path, the l3mdev driver can modify the skb or its
metadata as needed based on relevant features. If it returns
NULL, the skb is consumed by the l3mdev driver and no
further processing is done. Since the l3_out hook is called
before dst_output, an l3mdev driver can change the dst
attached to the skb thereby impacting the next function
(dst->output) invoked after the netfilter hook.

The VRF driver uses the l3mdev_l3_out handler to
implement device based features for the L3 domain (Figure
5). It accomplishes this by using the vrf_l3_out handler to
switch the skb dst to its per-VRF device dst and then
returns. The VRF dst has the output function pointing back
to the VRF driver.

The skb proceeds down the stack with dst->dev pointing to
the VRF device. Netfilter, qdisc and tc rules and network
taps are evaluated based on this device. Finally, the skb
makes it to the vrf_xmit function which resets the dst based
on a FIB lookup. It goes through the netfilter
LOCAL_OUT hook again this time with the real Tx device
and then back to dst_output for the real Tx path.

This additional processing comes with a performance
penalty, but that is a design decision within the VRF driver
and is separate topic from the l3mdev API. The relevant
point here is to illustrate what can be done in an l3mdev
driver.

Userspace API
As mentioned in the “Layer 3 Routing and Forwarding”
section network addresses and routes are local to an L3
domain. Accordingly, userspace programs communicating
over IPv4 and IPv6 need to specify which domain to use. If
a device (L3 domain) is not specified, the default table is
used for lookups and only addresses for interfaces not
enslaved to an l3mdev device are considered.

Since the domains are defined by network devices,
userspace can use the age old POSIX apis for sockets -
SO_BINDTODEVICE or cmsg and IP_PKTINFO

(datagram sockets). The former binds the socket to the
l3mdev device while the latter applies to a single sendmsg.
In both cases, the scope of the send is limited to a specific
L3 domain, affecting source address selection and route
lookups as mentioned earlier.

On ingress, the skb device index is set to the l3mdev
device index, so only unbound sockets (wildcard) or
sockets bound to the l3mdev device will match on a socket
lookup.

The tcp_l3mdev_accept sysctl allows a TCP server to bind
to a port globally — i.e., across all L3 domains. Any
connections accepted by it are bound to the L3 domain the
connection originates. This enables users to have a choice:
run a TCP-based daemon per L3 domain or run a single
daemon across all domains with client connections bound
to an L3 domain.

Performance Overhead
The l3mdev hooks into the core networking stack were
written such that if a user does not care about L3 devices
the feature completely compiles out. This by definition
means the existence of the code has no affect on
performance.

When the L3_MASTER_DEVICE config is enabled in the
kernel the hooks have been written to minimize the
overhead, leveraging device flags and organizing the
checks in the most likely paths first. The overhead in this
case is mostly extra device lookups on the oif or iif in the
flow struct and checking the priv_flags of a device
(IFF_L3MDEV_MASTER and IFF_L3MDEV_SLAVE) to
determine if the device is l3mdev related.

When an l3mdev is enabled (e.g., a VRF device is created
and an interface is enslaved to it) the performance

overhead is dictated by the driver and what it chooses to
do.

The intent of this performance comparison is to examine
the overhead of the l3mdev hooks in the packet path.
Latency tests such as netperf’s UDP_RR with 1-byte
payloads stress the overhead of l3mdev code and drivers
such as VRF. This study compared three cases:

1. l 3 m d e v d i s a b l e d (k e r n e l c o n f i g o p t i o n
CONFIG_NET_L3_MASTER_DEV is not set).

2. l3mdev compiled in, but no device instances are created.

3. l3mdev compiled in with a minimal VRF device driver.

For case 3, the VRF driver was reduced to only influencing
FIB lookups and switching the skb dev on ingress for
socket lookups. This means all of the Rx and Tx processing
discussed earlier (e.g, the nf_hooks and switching the dst
in the output path) were removed. The overhead of VRF
and options to improve it are a separate study.

Data were collected using a VM running on kvm with
virtio+vhost. The vcpus, vhost threads and netperf
command were restrained to specific cpus in the first numa
node of the host using taskset. The kernel for the VM was
net-next tree at commit 4c1fad64eff4.

Figure 6 shows the average UDP_RR transactions/sec for 3
30-sec runs. Comparing the result for cases 1 and 2 the
overhead of enabling the L3_MASTER_DEVICE kernel
configuration option is roughly 2.4% for IPv4 and 1.0% for
IPv6.

The overhead of the l3mdev code in the fast path is the
difference in UDP RR transactions per second between
cases 1 and 3. With the minimal VRF driver, a single VRF

with traffic through an enslaved interface has about a 3.6%
performance hit for IPv4 compared to without l3mdev
support at all, while IPv6 shows about a 3.2% gain. A
cursory review of perf output suggests one reason IPv6
shows a gain is less time spent looking for a source
address. Specifically, the l3mdev case spends 1/4 the time
in ipv6_get_saddr_eval as only interfaces in the L3 domain
are considered.

Despite the best efforts to control variability there is about
a 0.5% difference between netperf runs. Figure 6 does
show the general trend of what to expect with the current
l3mdev code which is a worst case loss in performance
around 2 to 3%.

Futhermore, UDP_RR is a worst case test as it exercises
the l3mdev overhead in both fib lookups and the l3mdev
hooks in the Rx and Tx paths for each packet. Other tests
such as TCP_RR show less degradation in performance
since connected sockets avoid fib lookups per packet.

Administration, Monitoring and Debugging
l3mdev devices follow the Linux networking paradigms
established by devices such as bridging and bonding.
Accordingly, l3mdev devices are created, configured,
monitored and destroyed using the existing Linux
networking APIs and tools such as iproute2.

As a master device, the rtnetlink features for
MASTER_DEVICE apply to l3mdev devices as well. For
example, filters can be passed in the link request to only
show devices enslaved to the l3mdev device:

 $ ip link show master red

or to only show addresses for devices enslaved to an L3
domain

 $ ip address show master red

or neighbor entries for the L3 domain:

 $ ip neighbor show master red

Furthermore, tools such as ss can use the inet diag API
with a device filter to list sockets bound to an l3mdev
device:

 ss -ap 'dev == red'

Maintaining existing semantics is another key feature of
l3mdev and by extension the VRF implementation.

Differences by Kernel Version
The l3mdev API is fairly new (about a year old at the time
of this writing) and to date driven by what is needed for the
VRF driver. A short summary by kernel version:

 v4.4 Initial l3mdev api added

 v4.5 tcp_l3mdev_accept sysctl added

 v4.7 l3mdev_l3_rcv driver operation added.

 v4.8 l3mdev FIB rule added

 v4.9 Overhaul of changes for FIB lookups.
l3mdev_l3_out operation added.

Conclusions
The L3 Master Device (l3mdev) is a layer 3 API that can
be leveraged by network drivers that want to influence FIB
lookups or manipulate packets at L3. The concept has been
driven by the VRF implementation but is by no means
limited to it. The API will continue to evolve for VRF as
well as any future drivers that wish to take advantage of
the capabilities.

Author Biography
David Ahern is a Member of Technical Staff at Cumulus
Networks.

