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Abstract
The  last  several  kernel  releases  have  seen  a  number  of  new
features  introduced  that  enable  significant  performance
improvements with tunnels,  and more specifically  tunnels  with
outer checksums enabled.

Local  checksum  offload  (LCO)  is  a  checksum  offloading
approach that was introduced early this year to resolve the issue
of  providing  an  outer  checksum  while  offloading  the  inner
checksum of a given tunneled frame.

TCP offload with IPv4 ID mangling (TSO_MANGLEID) is a
feature that was introduced to allow devices to repeat the same
IPv4 ID field for each packet.

Partial  GSO  (GSO_PARTIAL)  is  an  approach  by  which  a
device that cannot support tunnel offloads is enabled to do so by
only providing the device with information on some subset of the
packet  headers  while  allowing  GSO  itself  to  populate  the
remaining  headers  with  the  correct  values  for  the  segmented
frames.

With these features it becomes possible for drivers that didn't
previously  support  encapsulation  offloads  such  as  the  igb  and
ixgbe to now support encapsulation offloads. In addition they can
support offloads for more tunnel types than supported by most
other NICs with pure hardware support simply because they don't
have to rely on it and instead allow software to perform most of
the header configuration while handling the crucial piece which is
segmenting  the  actual  frame.  When  combined  with  an  outer
checksum  for  the  tunnel  it  allows  for  full  offloads  including
generic receive offload (GRO) which in turn allows us to send a
single thread of encapsulated frames at rates exceeding 10Gbps
with test tools such as netperf.

This paper will go over the kernel work that has been done to
enable  these features,  demonstrate  the  benefits  of  the features,
explain what settings need to be configured in order to get the
most out of these features, and provide a look at what hardware
vendors can do in order to make use of these features in future
devices.
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 Introduction
UDP encapsulation  based  tunnels,  and  more  specifically
approaches  such  as  VXLAN,  have  become  the  de-facto
standard  in  data  centers  that  are  making  use  of
virtualization.  One issue  with this  is  that  in  many cases
VXLAN is not supported with offloads such as TSO, Tx

Checksum, Rx checksum, or Receive Side Scaling due to
the extra header overhead involved in processing. Network
device  vendors  are  working  to  enable  support  in  new
devices but there are already a number of devices in use
that do not support such features.

In this paper we will go over recent work done to allow
us to make use of  these offloads on devices  that  do not
actually support a given tunnel type, but can be adapted to
do  so  with  a  few  minor  tweaks.  First  we  will  need  to
describe  the  basics  of  UDP encapsulation  and  how  the
headers for encapsulated frames are structured. Second we
can discuss how it is possible to offload the checksum for a
tunneled frame that might require an outer checksum via
local checksum offload (LCO). Then we will discuss how
this allows us to perform TSO on hardware that may not
support these tunnel types. Finally we discuss how making
use of  these  features  and enabling  Tx checksums in the
outer headers of encapsulated frames allows us to greatly
increase the throughput for  such tunnels as  it  allows for
robust offload support across multiple devices.

Basics of UDP Encapsulation
UDP encapsulation is a mechanism that allows us to take a
fully  formed  Ethernet  frame  and  package  it  in  a  UDP
datagram. This allows for transport across another network
or the Internet itself.. In the case of virtualization it is often
used to hide the structure of the underlying network from
the virtualized guests that may be resident in one ore more
data centers. An example of the header layout for a typical
TCP frame  encapsulated  inside  of  a  VXLAN  tunnel  is
shown in figure 1 below.

The  initial  design  of  many  tunnel  interfaces  strongly
encouraged using a checksum of 0 in the outer UDP header
[1]. This is primarily due to the fact that many switches do
not  normally  support  generating  checksum  so  adding
and/or  validating  a  checksum  on  encapsulation/
decapsulation  would  result  in  additional  overhead.  In
addition  most  Ethernet  adapters  do  not  provide  a
mechanism  for  providing  more  than  one  transport
checksum.  This  resulted  in  many tunnel  protocols  being
non-compliant with things such as IPv6, which prior to the
introduction of UDP based tunnels had required non-zero

Figure 1: Typical TCP Frame and Typical VXLAN Encapsulated Frame
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checksums so that the source and destination address could
be validated a part of the transport checksum [2].

In addition the lack of an outer header checksum meant
that identifying cases  where the packet might be eligible
for aggregation via mechanisms such as Generic Receive
Offload  (GRO)  would  require  additional  processing
overhead  in  the  case  of  CHECKSUM_COMPLETE  not
being supported as it would be necessary to process outer
headers  before  the  inner  packet  checksum  could  be
validated.

Basics of One’s Complement Checksum
The  idea  behind  a  one’s  complement  checksum  is  to
perform  a  sum  of  the  data  to  be  validated  using  one’s
complement addition. 

To  generate  a  checksum  we  must  first  clear  the
checksum field  and  then  perform the  one’s  complement
sum over the data to be checksummed. Once that value is
generated we then place the complement of that value in
the checksum field.  To validate  the  checksum when  the
packet is received we must take a one’s complement sum
over  the  checksummed  region.  If  the  result  is  all  ones,
otherwise  known as  negative  zero  in  one’s  complement
arithmetic,  then  the  checksum  has  been  validated  to  be
correct.

There  are  a  number  of  mathematical  properties  to  a
one’s complement checksum that can be exploited to allow
us to make better use of it when offloading.

The  first  is  that  as  long  as  we  respect  the  even/odd
assignment of the bytes for the checksum we can order the
additions any way we want  [4].  So if  we want  to work
from the beginning of the data to the end, or from the end
to  the  beginning  either  ordering  will  provide  the  same
result.

The second is that we can perform incremental updates
to the checksum. To do this all we need to do is add the
difference between the original and the new value.

In  the  case  of  transport  checksums  they  will  also
typically  include  a  pseudo  header  that  is  based  on  the
network layer source and destination addresses, length, and
protocol value. When offloading a transport checksum the
sum for the pseudo header is stored in the location of the
checksum so that it is included in the resultant checksum.

Remote Checksum Offload
An initial approach to resolving the problem of having to
populate two transport checksums was Remote Checksum
Offload  (RCO).  RCO stores  optional  metadata  with  the
encapsulated packet that indicates the location of the outer
checksum. Using this information it is then possible for the
contents  of  the  inner  frame  to  be  verified  as  the  outer
checksum will include the contents of the inner frame as a
part of its own checksum calculation.

While  this  approach  works  to  resolve  the  problem of
having  2  checksums.  It  results  in  a  number  of
complications  as  it  requires  additional  metadata  to  be
included with the frame [3]. This often results in hardware
parsers not being able to parse the frames that use RCO as

they expect a certain layout to the frame and do not know
how  to  handle  the  frame  when  it  contains  this  extra
metadata.

Since  many  network  adapters  do  support  a  UDP
checksum offload one advantage to this approach is that
the  Rx  checksum  verification  can  be  performed  by
hardware.  This in turn allows for  offloads such as GRO
which  can  greatly  improve  performance  by  aggregating
multiple  frames  into  a  single  frame  which  reduces  the
number of trips needed through the stack.

Local Checksum Offload
Making use of the known properties of a one’s complement
checksum an alternate approach was found that allows us
to simply compute the outer checksum for a relatively low
CPU cost while offloading the inner transport checksum.

An assertion we must accept in order to be able to do
this  is  that  the  resultant  one’s  complement  sum for  the
frame from the start of the inner transport header to the end
of the packet will be equal to the checksum for the inner
network pseudo header [5]. The assumption here is that we
will be offloading the inner transport checksum and since
the  sum  of  all  bytes  including  the  pseudo  header  is
supposed to  be negative zero,  if  we exclude  the pseudo
header  as  it  exists outside of  the transport  data then the
resultant checksum for all bytes from the transport header
onward must be equal to the checksum of just the pseudo
header.

Once we know that the one’s complement sum for all of
the inner transport header and data is the checksum for the
inner pseudo header it becomes much easier to compute as
we  only  need  to  compute  the  checksum  from the  outer
transport header to the inner transport header. In the case of
VXLAN  this  is  typically  somewhere  between  50  to  70
octets depending on if the inner network protocol is IPv4
or IPv6.

This approach has many advantages.  Among them are
the fact that using this approach gets the benefits of RCO
in that the outer checksum is populated so older devices
that do not know how to parse a given encapsulation type
can still perform UDP checksum validation which in turn
allows for the use of GRO. However it doesn’t suffer from
the RCO parsing penalties as it is not having to package
any  additional  metadata  with  the  frame.  So  hardware
parsers  that  expect  a  specific  encapsulation  layout  can
make  use  of  the  outer  checksum  without  negatively
impacting their ability to parse the frame headers.

Using this approach it becomes possible to make use of
any  device  that  can  support  the  Tx  checksum  via  the
NETIF_F_HW_CSUM feature.  As  a  result  many legacy
devices become capable of supporting providing both an
inner and outer checksum. 

Partial GSO
One limitation of LCO is that it  only applies to a single
send.  In order  to  extend it  beyond this  limitation it  was
necessary  to  explore  what  limitations  needed  to  be
addressed to apply this to segmentation cases. In addition



there were  already a number of devices  and drivers  that
supported segmentation of  encapsulated frames,  however
none  of  these  supported  segmentation  when  an  outer
checksum was present.  To address  this it  is necessary to
find  cases  where  we  can  provide  a  checksum  via  a
mechanism  similar  to  LCO  that  could  be  applied  to  a
segmentation offload.

When a frame is segmented typically only a few fields
are  updated.  In  the  case  of  a  IPv4/UDP  encapsulated
IPv4/TCP frame the following fields vary between packets:

• Outer IPv4 ID
• Outer IPv4 Checksum
• Outer IPv4 Length / Outer IPv6 Payload Length
• Outer UDP Checksum
• Outer UDP Length
• Inner IPv4 ID
• Inner IPv4 Checksum
• Inner IPv4 Length / Inner IPv6 Payload Length
• Inner TCP Sequence Number
• Inner TCP Checksum
• Inner TCP Flags

Most tunnel segmentation offloads can update all of the
above  fields  with  the  exception  of  the  outer  UDP
checksum. On investigating it turns out that most devices
actually ignore the value and instead just replicate it, so if
it  is  populated  that  populated  value  is  replicated  to  all
segments.

The  outer  UDP  checksum  for  a  given  sequence  of
segments is actually the same value for all segments but
the last if it varies in size. This is a result of the Inner IPv4
checksum canceling out the changes in the inner IPv4 ID
field, and the inner TCP checksum canceling out changes
in the sequence  number and flags  fields.  This  leaves  us
with only  the  outer  IPv4 length,  outer  UDP length,  and
inner  IPv4  length  fields  actually  effecting  the  UDP
checksum. Similar logic applies in the case of IPv6 as it
doesn’t include either an ID or checksum field. As a result
if  we can guarantee  that  all  of  the segments  of  a  given
frame are exactly the same length we could provide one
outer UDP checksum value and that value would be correct
for all of the frames in a given sequence.

To force all of the segments of a given frame to be the
same  size  Partial  Generic  Segmentation  Offload  was
introduced. The idea behind Partial GSO is to force a frame
requesting segmentation into a size that is an even multiple
of the maximum segment size and to populate all of the
fields prior to the inner transport header with the values as
though they are a single frame.

This  leaves  us  with  a  frame  ready  to  be  segmented
assuming that the device performing the segmentation will
update the following fields:

• Outer IPv4 ID
• Outer IPv4 Checksum
• Inner IPv4 ID
• Inner IPv4 Checksum
• Inner TCP Sequence Number
• Inner TCP Checksum

• Inner TCP Flags
The  resulting  fields  needed  to  be  updated  are  greatly

reduced.  In  addition  the  fields  only  really  differ  from
traditional TSO without tunnels in that we have to update
the inner header IPv4 ID and IPv4 checksum as a result of
the ID changing. If we could leave these two fields fixed it
might be possible for us to extend TSO even further.

TSO with IPv4 ID Mangling
The concept behind TSO with IPv4 with ID mangling is
meant  to  provide  a  way  to  take  GSO  Partial  further.
Specifically what we do is find cases where we can avoid
having to update the IPv4 ID field and as a result we can
leave that value and the IPv4 checksum value static.

In the case of TCP we normally require that the “do not
fragment”  flag  is  set.  This  means  that  the  IPv4  frame
should  not  be  fragmented.  If  we reference  RFC 6864 it
clearly states that “The IPv4 ID field MUST NOT be used
for purposes other than fragmentation and reassembly” [6].
With these two facts one would assume it is safe to leave
the IPv4 ID field static in the case of TSO as a correctly
implemented protocol stack should not be evaluating the
IPv4  ID  as  we  are  not  fragmenting  nor  reassembly
fragmented frames.

One limitation on this is that GRO and GSO are meant
to  provide  a  non-destructive  means  for  aggregating  and
segmenting frames [7]. This means that we should not be
losing data. Unfortunately if we aggregate a frame with an
increasing  IPv4  ID  via  GRO  and  we  are  attempting  to
segment it via a device that can only do so via TSO with
IPv4 ID mangling then  we would  be  altering  the  frame
data.  In  addition  there  are  some  compression  schemes,
such  as  those  used  for  PPP,  for  which  attempting  to
transmit  frames  with  a  fixed  IPv4 ID value  can  be  less
efficient.  For  this  reason  we  currently  are  leaving  this
feature disabled by default and it must be enabled by the
user to make use of it.

Why Less is More
Many network drivers  currently implement a  mechanism
for tracking the port numbers that are used for protocols
such  as  VXLAN  and  GENEVE.  These  allow  for
functionality  such  as  parsing  of  frames  for  Tx
segmentation offload, Tx checksum offload, Rx checksum
offload, and Receive Side Scaling (RSS). One limitation of
this is that such functionality is normally limited to only a
certain number of ports on a PF as in the case of i40e, or
limited to one port for each protocol type as in the case of
fm10k.

An  additional  limitation  is  that  normally  only  a  few
tunnel  types  are  supported  such  as  VXLAN or  possibly
GENEVE, however there are additional UDP based tunnel
types  available  such  as  VXLAN-GPE,  FOU,  or  GUE.
Hardware  often  can  not  be  extended  to  support  other
protocols,  or  if  it  can  it  requires  significant  firmware
changes.  These limitations make it  difficult  to  use these
offloads when you have  an environment  that  consists of
things  such  as  multiple  namespaces,  multiple  ports,



multiple  VFs,  and  situations  where  you  might  need  to
support  things such as tunnels in tunnels,  or new tunnel
extensions  that  were  released  after  the  hardware  was
released.

One of the main goals of GSO partial was to support an
environment  in  which  devices  without  tunnel  offloads
would be able to make use of some form of tunnel offload.
To  this  end  I  make  use  of  a  common Ethernet  silicon,
specifically  the  Intel  X540,  that  had  no  support  for
VXLAN offloads  so that  I  could use that  for  my initial
proof  of  concept.  What  I  did  is  determined  what
environment  variables  and  changes  would  be  needed  in
order to allow for ideal throughput when sending messages
between  VFs  on  the  same  silicon.  This  allowed  me  to
exceed the 10Gb/s limitations of the external port on the
device.

The first  major  ingredient  involved  in  enabling  better
performance  for  VXLAN  tunnels  is  to  find  a  way  to
overcome the lack of an inner checksum offload. In order
to  overcome  this  it  was  necessary  to  enable  the  outer
checksum on the tunnel as I could then use this value to
validate  the  inner  checksum  using  software  techniques.
However this places a limitation on our Tx path as we must
then also  support  providing  inner  checksum offload  and
LCO.  In order to support inner checksums on the ixgbe
and ixgbevf drivers it was necessary to modify the driver
so  that  we  could  support  NETIF_F_HW_CSUM as  this
allows  for  a  fully  generic  Tx  checksum  offload.  If  the
device  supported  notifications  of  Rx  checksums  via
CHECKSUM_COMPLETE  it  would  be  possible  to
support offloading the checksums without even needing to
include the outer checksum in the packet.  However with
that  not being the case it  was  necessary  to enable  outer
tunnel checksums.  By enabling the outer  checksum and
adding  support  for  NETIF_F_HW_CSUM  I  saw  the
throughput  double  for  tunnels  with  the  bottleneck  being
moved from the Rx path to the Tx path as the segmentation
workload consumed a significant amount of CPU time.

The  second  piece  to  improving  VXLAN  tunnel
performance  is  providing  the  ability  to  scale  traffic
between two tunnel endpoints. One of the pieces of data
lost when data is encapsulated inside of a tunnel is that the
inner L3 and L4 headers are no longer accessible unless
you know that a given UDP port number is a tunnel and the
format  of  tunnel  used.  To work  around  this  many UDP
based tunnels provide a hash of the inner header data in the
source port for the tunnel. As such we can work around this
limitation  by  enabling  hashing  on  the  UDP source  and
destination ports  for  all  UDP traffic.  One limitation this
introduces though is possible packet  reordering for  UDP
flows  that  experience  fragmentation  as  fragments  are
normally  hashed  only  on  the  IP  header  source  and
destination address, whereas a non-fragmented frame will
include the UDP source and destination port  numbers in
the resultant hash.

The final piece to improving the performance was GSO
partial. To fully support GSO Partial for ixgbe and ixgbevf
it was necessary to add support for TCP Segmentation with

IPv4 ID mangling as  the  TSO support  in  hardware  was
only capable of updating one IP header.  Enabling support
for  GSO  partial  reduced  the  Tx  overhead  for  a  simple
netperf test by several fold. As a result the bottleneck had
moved back from the Tx to the Rx side. Adding additional
threads I was able to approach nearly 15Gb/s but began to
encounter the limitations of the PCIe Gen2 x8 link for the
device  instead  of  saturating  the  Tx CPU which  made it
difficult to determine the full gain of this change.

In the case of the Intel drivers igb, igbvf, ixgbe, ixgbevf,
i40e, and i40evf it  is  possible to fully support  all  tunnel
types  currently  supported  by  the  stack  using  these
approaches.  However  there  are  many  drivers  where  we
cannot support segmentation in this way. Examples include
the fm10k driver where the ability to parse the packet is
required to perform checksum offload and/or segmentation.
In  the  case  of  such  devices  our  functionality  becomes
limited  and  we  have  to  resort  to  performing  all  of  the
segmentation and checksum work in software. In addition
if  devices  in  the  future  supported
CHECKSUM_COMPLETE  and  reported  the  packet
checksum instead  of  the  current  approach  that  normally
only validates it we might be able in the future to support
tunnels much more generically.

Conclusion
With the introduction of GSO Partial and LCO it becomes
quite easy to support offloading of tunnels on devices that
may not support the actual tunnel protocol, but provide the
basic tools needed to support minimal offloads.
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