
Reducing Latency in Linux Wireless Network Drivers

Tim Shepard
shep@alum.mit.edu

netdev 1.1 — Sevilla, España — 10-12 Febrero 2016

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Background:

”Bufferbloat” has been an issue for awhile.

Much progress made several years ago.

Mostly fixable now with:

tc qdisc replace dev eth0 root fq_codel

(Note: do that on the queue that is feeding the
bottleneck link on the path. Not needed on
non-bottleneck links.)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

My friend Andrew McGregor’s story...

Found Nexus 5 wlan driver badly bloated.

Succeeded in explaining to Android folk.

Failed to get the ball out of his court.

.... until he talked me into working on this.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

I spent most of 2015 confused, until early December

Do we need to fix wireless drivers?

Or do we need to fix how they are fed?

Review:
How was the latency problem solved for non-wireless drivers?

fq_codel

and... what else?

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Drivers pull packets out of the linux qdisc before they are sent
for good reason.

This was and is true for non-wireless drivers too.

Key is to pull enough (performance), but not too much (bloat).

4+ years ago, BQL and DQL landed in mainline Linux

DQL provides a library that does auto-tuning, and BQL hooks
it up to control the flow from the Linux qdiscs to the device
transmit buffers. Watches the completion events at runtime
and figures out how much to let the device have. (Just a bit
more than what is needed to avoid starvation.)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

What I realized in early December was that this is what is
needed for wireless drivers.

But: DQL’s assumptions won’t work in the case of wireless.

Imagine an AP sending to two clients... one client distant
(going to be low rate) and a nearby client (highest rates
working robustly).

BQL/DQL assumes it is trying to tune the system’s response
to completion events to match the rate at which packets are
transmitted to the system’s ability to respond to a completion
and hand more packets to the device for transmission.

(BQL’s unit of work is bytes. B is bytes.)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Actually, what matters is not how many bytes of transmit work
you’ve handed to a device. What matters is how long you
expect that to take.

For normal (wired) network devices, bytes makes a pretty good
proxy measure of the time it is going to take. (Proportionality
is all that’s needed. DQL will autotune the constant scaling
factor out.)

OK, so what to do for wireless?

It’s not going to be so simple, and I don’t have the full answer
yet, but here are some ideas...

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Main idea: for wireless interfaces use units of time hooked up
to something DQL-like in mac80211.

If using mac80211 rate control, use rate control information to
convert bytes to units of time. (If not... it is going to be
complicated. Maybe a Baysian estimator per destination
station.)

Take the packets in the order being fed to us by the Linux
qdisc (where policy is) and feed just enough of them to the
lower level wireless drivers to avoid starving the transmitter’s
DMA engine.

Hope DQL’s auto-tuning will take care of varying channel
conditions.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

802.11 specifies multi-queue with a priority scheme. Most or
all modern wireless interfaces and their Linux drivers do
implement this. Need DQL that understands these queues
share the transmission capacity.

Mapping from length rate info to expected time will need to be
aware of aggregation, either explicitly, or via some guesstimate.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

The new intermediate transmit queues in mac80211 (in Linux
since April 2015) are part of the solution. Should allow us to
share the solution between multiple devices.

This patch moves the flow control (from qdisc to device driver)
out of the device driver and into mac80211.

I’ve got a patch for ath9k to use these new intermediate
queues (instead of its own internal per-tid per station queues).
Seems to work. Needs more testing (1) by me, and (2) let me
know if you want to help.

Will eventually want to cut other wireless drivers over to use
the new intermediate queues.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

I have a very crude kludge of a patch to mac80211 which
hooks up a DQL instance per ac and uses it instead of the
existing (fixed constant limit) flow control IFF the driver uses
the new intermediate queues AND driver uses mac80211 RC.

This patch is for experimentation and demo purposes only.

And it doesn’t work yet—locks up the driver. Should work any
day now. :-)

Even when I get it working, I don’t expect it will work right in
general. But hand-tuning it should let us see how good we can
get.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

What I can demo today:

An AP and two associated client stations.

Power turned down to 3mW on AP to make things more
interesting.

One client near the AP (on the same table, a few inches away).

Other client in next room, about 10 meteres away.

Ping (once per second) from nearby client. After 5 seconds of
pinging, start a bulk download from server on the LAN.

Note how the bulk download from the second client intereferes
(adds latency) to the nearby client’s pings.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

64 bytes from 192.168.5.187: seq=0 ttl=64 time=1.805 ms

64 bytes from 192.168.5.187: seq=1 ttl=64 time=1.456 ms

64 bytes from 192.168.5.187: seq=2 ttl=64 time=1.772 ms

64 bytes from 192.168.5.187: seq=3 ttl=64 time=1.518 ms

64 bytes from 192.168.5.187: seq=4 ttl=64 time=1.120 ms

64 bytes from 192.168.5.187: seq=5 ttl=64 time=1.443 ms

64 bytes from 192.168.5.187: seq=6 ttl=64 time=8.927 ms

64 bytes from 192.168.5.187: seq=7 ttl=64 time=48.938 ms

64 bytes from 192.168.5.187: seq=8 ttl=64 time=47.640 ms

64 bytes from 192.168.5.187: seq=9 ttl=64 time=137.210 ms

64 bytes from 192.168.5.187: seq=10 ttl=64 time=100.463 ms

64 bytes from 192.168.5.187: seq=11 ttl=64 time=130.380 ms

64 bytes from 192.168.5.187: seq=12 ttl=64 time=143.099 ms

64 bytes from 192.168.5.187: seq=13 ttl=64 time=153.504 ms

64 bytes from 192.168.5.187: seq=14 ttl=64 time=141.456 ms

64 bytes from 192.168.5.187: seq=15 ttl=64 time=172.497 ms

64 bytes from 192.168.5.187: seq=16 ttl=64 time=144.905 ms

64 bytes from 192.168.5.187: seq=17 ttl=64 time=173.305 ms

64 bytes from 192.168.5.187: seq=18 ttl=64 time=119.317 ms

64 bytes from 192.168.5.187: seq=19 ttl=64 time=128.221 ms

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Oops, that was without fq codel.

Much of that bloat was in the Linux default qdisc.

tc qdisc replace dev wlan0 root fq_codel

on the AP and try again.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

64 bytes from 192.168.5.187: seq=0 ttl=64 time=1.533 ms

64 bytes from 192.168.5.187: seq=1 ttl=64 time=1.429 ms

64 bytes from 192.168.5.187: seq=2 ttl=64 time=1.438 ms

64 bytes from 192.168.5.187: seq=3 ttl=64 time=1.775 ms

64 bytes from 192.168.5.187: seq=4 ttl=64 time=1.426 ms

64 bytes from 192.168.5.187: seq=5 ttl=64 time=1.459 ms

64 bytes from 192.168.5.187: seq=6 ttl=64 time=23.243 ms

64 bytes from 192.168.5.187: seq=7 ttl=64 time=7.401 ms

64 bytes from 192.168.5.187: seq=8 ttl=64 time=2.281 ms

64 bytes from 192.168.5.187: seq=9 ttl=64 time=13.135 ms

64 bytes from 192.168.5.187: seq=10 ttl=64 time=18.423 ms

64 bytes from 192.168.5.187: seq=11 ttl=64 time=19.316 ms

64 bytes from 192.168.5.187: seq=12 ttl=64 time=10.165 ms

64 bytes from 192.168.5.187: seq=13 ttl=64 time=17.567 ms

64 bytes from 192.168.5.187: seq=14 ttl=64 time=21.018 ms

64 bytes from 192.168.5.187: seq=15 ttl=64 time=59.292 ms

64 bytes from 192.168.5.187: seq=16 ttl=64 time=55.228 ms

64 bytes from 192.168.5.187: seq=17 ttl=64 time=33.936 ms

64 bytes from 192.168.5.187: seq=18 ttl=64 time=13.610 ms

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

and now again with fq codel and ath9k using the mac80211 intermediate
queues...

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

64 bytes from 192.168.5.187: seq=0 ttl=64 time=1.789 ms

64 bytes from 192.168.5.187: seq=1 ttl=64 time=1.452 ms

64 bytes from 192.168.5.187: seq=2 ttl=64 time=1.439 ms

64 bytes from 192.168.5.187: seq=3 ttl=64 time=1.456 ms

64 bytes from 192.168.5.187: seq=4 ttl=64 time=5.232 ms

64 bytes from 192.168.5.187: seq=5 ttl=64 time=1.431 ms

64 bytes from 192.168.5.187: seq=6 ttl=64 time=1.422 ms

64 bytes from 192.168.5.187: seq=7 ttl=64 time=1.429 ms

64 bytes from 192.168.5.187: seq=8 ttl=64 time=51.174 ms

64 bytes from 192.168.5.187: seq=9 ttl=64 time=1.515 ms

64 bytes from 192.168.5.187: seq=10 ttl=64 time=2.663 ms

64 bytes from 192.168.5.187: seq=11 ttl=64 time=17.367 ms

64 bytes from 192.168.5.187: seq=12 ttl=64 time=22.965 ms

64 bytes from 192.168.5.187: seq=13 ttl=64 time=9.485 ms

64 bytes from 192.168.5.187: seq=14 ttl=64 time=11.500 ms

64 bytes from 192.168.5.187: seq=15 ttl=64 time=19.749 ms

64 bytes from 192.168.5.187: seq=16 ttl=64 time=19.827 ms

64 bytes from 192.168.5.187: seq=17 ttl=64 time=16.181 ms

64 bytes from 192.168.5.187: seq=18 ttl=64 time=9.084 ms

64 bytes from 192.168.5.187: seq=19 ttl=64 time=30.826 ms

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Please feel free to try and un-confuse me even further.

I might be more coherent tomorrow after getting some sleep.

I should be around through Friday. afternoon.

Thanks:

Andrew McGregor for starting me down this path, and continuing to
listen to my confusion.

Avery Pennarun for regularly listening to me in my confusion multiple
times per week for a couple of years.

Avery Pennarun and his employer Google Fiber for sending some funding
my way to make this work possible.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

