
Shared Memory Pool for Representors

William Tu, Michal Swiatkowski, and Yossi Kuperman
Nvidia and Intel
NetDev 0x18, 2024

Switchdev Mode
Fast Path

• An embedded switch in NIC

• Legacy mode supports basic L2 features (mac/vlan)

• Switchdev supports advanced hardware offloads

• Vports (VFs/SFs) are switchdev ports and connected to VM

• Handle most of the traffic in hardware

switchdev

uplink

vport1 vport2

vport1 vport2

VM1/
Container

VM2/
Container

NIC

Host

Fast-path

PF

switchdev

uplink

vport1 vport2

vport1 vport2

VM1/
Container

VM2/
Container

NIC

Host

Software Switch PF repr

repr1 repr2

Uplink
repr

OVS/Linux bridge programs
offload rules

NIC-DPU/Host

Fast-path
Slow-path

Slow-path

Fast-path

PF

Switchdev Mode
Slow-Path

• Runs on host, or in SmartNIC embedded CPU

• Each vport has its own representor port (repr)

• Repr is the control plane of the vport (representee)

• Reprs attached to OVS or Linux bridge

• Handles first couple packets of a connection

• Insert/delete/update rules into switchdev

Slow-Path Design Challenges

When creating thousands of SFs/VFs:

• Each VF/SF has its own representor netdev, 1:1 mapping

• Each representor netdev has its own RXQs, TXQs

Challenges

• NIC does not have enough hardware queues
• ICE supports up to 1K queues

• Consume too much memory
• Memory is not enough on SmartNIC

Do we need a dedicated netdev for
just handling slow path traffic?

Slow-Path Design Challenges

When creating thousands of SFs/VFs with representors: à Design-0: Dedicated repr netdev

• Each VF/SF has its own representor netdev, 1:1 mapping

• Each representor netdev has its own RXQs

Challenges Solutions
NIC does not have enough hardware
queues

Design-1: Shared RXQs

Consume too much memory Design-2: Adjustable RXQ for dedicated repr
netdev

Design-1: Shared RXQ of PF
Solve the Hardware Queues Limitation

• Don’t allocate any RXQs for representors

• Shared RXQ for all representors

• RX completion metadata indicates the incoming
source vport id

• TX can also use shared TXQ

• Used by ice, nfp, sfc

• Huge memory and queue saving RX Steering

Shared
RXQs repr1 repr-N

All slow-path traffic

XX

Linux Network Stack

…

vport1 vport2

VM1/
Container

VM2/
Container

Host

Software Switch PF repr

repr1 repr2

Uplink
repr

OVS handles/programs
offload rules

NIC-DPU/Host

Slow-path

PF

Design-1: Fairness Issue
Sharing causes Starving!

Assume traffic all goes into slow-path

• VM1 runs DPDK-pktgen

• VM2 runs ping

• All the buffers of shared RXQs are used by VM1

• VM2 get zero slow-path bandwidth L

• No performance isolation

• Why not use tc policing/shaping? Backpressure?

Slow-Path Design Challenges

When creating thousands of SFs/VFs with representors: à Design-0: Dedicated Repr netdev

• Each VF/SF has its own representor netdev, 1:1 mapping

• Each representor netdev has its own RXQs

2nd Challenge

Challenges Solutions
NIC does not have enough hardware
queues

Design-1: Shared RXQs

Consume too much memory Design-2: Adjustable RXQ for dedicated repr
netdev

Experiment (1/2)
How much memory a mlx5 representor netdev consumes?

• Create 200 SF-rep

• Setup RXQs and UP:

• Get memory differences

for i in {100..200}; do
 devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum $i
done

for i in {100..200}; do
 ethtool -L $dev combined 1 // number of channel/rxq
 ethtool -G $dev rx 1024 // RXQ depth
 ip link set dev $dev up
done

$ sar –r 1
04:51:08 PM kbmemfree kbavail …
04:51:09 PM 31179532 31321476

Experiment (2/2)
How much memory a mlx5 representor netdev consumes?

• FW pages

• Page pool:

• /proc/slabinfo, meminfo

/sys/kernel/debug/mlx5/0000\:08\:00.0/pages/fw_pages_total

./tools/net/ynl/cli.py --spec Documentation/netlink/specs/netdev.yaml
--dump page-pool-get
{'id': 20,
 'ifindex': 10,
 'inflight': 448, // pages
 'inflight-mem’: 1,835,008, // bytes
 'napi-id': 518},

MLX5 Representor Memory Consumption

• 1-RXQ, with 1024 RXQ depth: 2.86MB

• Page pool consumes 1.83MB out of 2.86MB

• 2 channels is around double: 5MB

1 RXQ total (MB)
Kernel Page Pool
(MB) per-RXQ FW (MB) 2 RXQs (MB)

Q128 1.1 0.2 0.113 2.835

Q256 1.3 0.4 0.114 2.915

Q512 1.805 0.78 0.114 2.99

Q1024 2.86 1.83 0.114 5.025

Q2048 4.935 3.93 0.115 9.25

Can we allocate less RXQ buffers?

Background: RXQ Buffer Pre-allocation
Why do we need RXQ buffers?

• A NIC has multiple RXQs (circular rings)

• Each RXQ has its own page pool, for re-allocating new pages after processing

• Pre-allocates buffers for
• Handling burstiness, or
• Per-packet processing jitters
• NAPI schedule delay

bufbuf … rxq buffers

NAPI rx
packets

max rxq depth
No buffer allocatedBuffer allocated

Refill with new pages Per-RXQ Page Pool

diff color

Quick Evaluation (1/2)
Fixed High Watermark

• Two servers connected back-to-back, single iperf TCP throughput

• Hardware offload disabled, all traffic go to slow-path OVS

• Statically change representor’s RXQ depth (ethtool –G rx) from 64 to 2048

0
1
2
3
4
5
6
7

64 128 256 512 1024 2048
RXQ Depth

TCP throughput (Gbps)

What if there is no / little traffic?

Design-2: Adjustable RXQ
save memory by dynamic allocation

Currently

• Driver always refill rxq to full, ex: default 1024 buffers

• Performance drop if rxq depth is too shallow, ex: 64

• But what if there is little traffic? Then we waste lots of memory

… … …

…

Current: always refill to full

Repr1 Repr2 Repr-N

Design2: Dedicated Repr netdev with Adjustable RXQ
save memory by dynamic allocation

Currently

• Driver always refill rxq to full, ex: default 1024 buffers

• Performance drop if rxq depth is too shallow, ex: 64

• But what if there is little traffic? Then we waste lots of memory

Idea: Don’t always allocate to full rxq size à save memory!

• Performance impact: First burst of traffic greater 128 definitely lost

• Low watermark set to fixed 128 buffers (2*NAPI_BUDGET)

• High watermark, max RXQ buffers, set by ethtool –G rx

… … …

…

Current: always refill to full

Repr1 Repr2 Repr-N

low
watermark

128

… … …

…

Propose: dynamic refill
Repr1 Repr2 Repr-N

high
watermark

Quick Evaluation (2/2)
Dynamically Adjust the RXQ Depth

Simple Algorithm:

• When in NAPI-interrupt: save memory by not refill, or refill up to low_watermark

• When in NAPI-busy: fallback to default behavior, driver refill to FULL

• The first burst over 128 definitely drops, but we’ll catch up

5.19

6 6.25
5.79 5.49

0
1
2
3
4
5
6
7

128 256 512 1024 2048

TC
P

G
bp

s

High Watermark

Static RXQ vs Adjustable RXQ

static

adjustable

Design-2+: Adjustable RXQ with Shared Page Pool
Problem: The later-created representors might get no memory

• Current: each RXQ (NAPI) has its own page pool

• Propose: all RXQs use the same page pool

• Challenge: Need to track each RXQ usage and need lock

• Use for representors (shared single DMA device)

…

Kernel
shared page

pool

PF repr rxq

repr1 rxq

reprN rxq
Enforce fairness

Owner of the
shared page pool

kernel

Requests pages from
the shared page pool

…

Adj. RXQ

Fairness issue?

Fairness with Shared Page Pool
Borrow the solution from hardware switch and devlink-sb interface

Shared Buffer in Hardware Switch

• Each output port has a logical queue

• The logical queue decides the budge/usage of the output port

• Dynamic Threshold: adjust queue depth based on current usage

For switchdev

• Logical queue -> RXQ

• Port -> representor netdev

• Shared Buffer -> shared page pool

Limit a port’s shared memory usage to :

Shared Memory Switch with
multiple output ports

…Shared
Buffer

port1

port2

portN

Dynamic Queue Length Thresholds for Shared-Memory Packet Switches
Sizing Router Buffers

New Devlink Attribute: spool-mode
None, Basic (Shared RXQs), SPP (Shared Page Pool)

• Limited by Memory/Queue -> use shared RXQs

• Performance isolation is important -> use adjustable RXQs or dedicated

mode Feature Drivers
None Design-0: Dedicated repr netdev Octeontx2, mlx5

Basic Design-1: Shared RXQs ICE, BNXT, NFP, SFC

SPP Design-2: Adjustable RXQ with
shared page pool

dedicated repr netdev, ex: Octeontx2, mlx5

$ devlink dev eswitch set pci/0000:08:00.0 mode switchdev spool-mode none

Shared RXQ with PF, ex: ICE, nfp

$ devlink dev eswitch set pci/0000:08:00.0 mode switchdev spool-mode basic

WIP

$ devlink dev eswitch set pci/0000:08:00.0 mode switchdev spool-mode spp

Performance Evaluation

vport
ab/iperf
Client

Host

OVS vport
ab/iperf
Server

Host

OVS

DPU DPU

wire

Evaluation-1: Static RXQ, 64 - 2048
Apache ab benchmark with 1 million requests 100 concurrency, with different RXQ depth

Disable hw-offload

• Time to complete (sec): total time taken for completing the 1 million requests.

• out of buffers (K): a firmware counter, rx out of buffer, re- porting number of packets dropped due to no RXQ
buffer available.

• Requests (K) / sec: average HTTP requests per seconds

• Connection Time (ms) and SD: average connection time, including connect, processing, and waiting, of the 1
million connections and their standard deviation (SD).

Evaluation-2: Static RXQ vs Adjustable RXQ
Apache ab benchmark with 1 million requests 100 concurrency, with different RXQ depth

Disable hw-offload

• Out of buffers showing more packets are dropped

• Higher jittering

• Average time to complete is similar

Static RXQ Adjustable RXQ

Definitely need more benchmark strategies

Summary
Need your feedback!

• Switchdev slow-path and fast-path

• Dedicated Representor Netdev and Shared RXQs

• Adjustable RXQ (vendor drivers) with shared page pool

• Add new devlink eswitch attribute: spool-mode

• More performance number and design in paper

Discussion

• Can shared page pool used in fast-path virtual device?

• How to model the performance of adaptive RXQ?

Thank you!

Backup Slides

rep 1Uplink rep …

rq0 rq3…

Eth TypeVport ID packet

rep2
NIC RX

packet

Eswitch
FDB

rep2
UL
rep

UL
RX FT

dest = esw->manager_vport

rq0 rq3…X X

(1)

(2)

(3)(4)

(5)

Miss fdb

OFED: Uplink Rep’s RQ for all other RQs
Uplink RQ’s to service all RX packets destined for non-uplink representors (SF/VF/PF)

Control plane

• Devlink enable at switchdev mode/ or disable

• Maintain xarray for vport id to representor netdev struct

Data plane: Steering

• Insert pet header of 8 bytes (2 bytes contains new ethertype)

• Copy 2 bytes of source vport that is stored in reg_c0

• Set uplink as destination vport

Data Plane: driver

• Get vport id from rx buffer, lookup netdev struct using vport
id

• Strip the 8 bytes from SKB and patch the SKB with correct
netdev

Scaling uplink REP’s rx Queues
Targeting 1K SFs

No Shared RQ

• each repr has its own rxq, ex: 2 channel/2 rxqs

• 1k representors has total 2k rxqs

• Each rep’s flow through its own rxhash

With Shared RQ on BlueField-3

• PF creates 16 rxqs (max limited by CPUs)

• Traffic from all representors uses the same rxhash and decides which rxq

Idea: increase 16 to more, ex: 128

• Lower the chance for hash collision, depth depends on NAPI scheduler

• NAPI schedule natively provides fairness for each queue

• 16 queues with 1024 entries is different than 128 queues with 64 entries!

• Can we hash based on vport_id? If yes, it’s the same as no-sharedrq

• Existing ethtool controls everything, no extra knob needed? rxhash

rxqs

Uplink-REP

...

Packets from all representorsRFC: https://git-nbu.nvidia.com/r/c/upstream/linux/+/1099459

rxhash

rxqs

REP1

rxhash

rxqs

REP2

rxhash

rxqs

REPn

... No SharedRQ

Packets steered to its own TIR

SharedRQ

