
Shared Memory Pool for Representors

William Tu, Michal Swiatkowski, and Yossi Kuperman
Nvidia and Intel

witu@nvidia.com, michal.swiatkowski@intel.com, yossiku@nvidia.com
NetDev 0x18, CA, USA, July 15th-19th, 2024

Abstract

Representor is a special object that controls the slow path of
switchdev virtual port, or vport (the representee). When scal-
ing to thousands of vports, a corresponding thousands of rep-
resentor netdevs are created and thousands of representor net-
devs becomes resource heavy, especially for SmartNICs or
DPUs (Data Processing Unit). An Nvidia Bluefield-2 contains
16GB of memory, but creating one thousand representor net-
devs can use more than 10GB of RX memory buffer. Exist-
ing solutions save memory by sharing the RXQs of a Physical
Function among all other reprensetors. However, this approach
suffers from unfairness: a single VM can easily monopolize
all RXQs, causing no RX buffers available for other VMs. The
paper proposes a design with adjustable RXQ depth using a
shared page pool. Our result shows that we can save 50% of
memory with less than 10% of performance impact.

Keywords
SmartNIC/DPU, Switchdev, Page Pool, Receive Queues

Introduction
Modern network devices support advanced switching and of-
floading capabilities, called switchdev mode. In switchdev
mode, users can create multiple virtual ports, or vports,
through sysfs and assign vports to virtual machines or con-
tainers. The switchdev mode includes PFs, the Primary Func-
tions of a PCIe device, with full access to the device’s capa-
bilities. PFs manages multiple types of vports, including VFs
(Virtual Functions) and SFs (Sub/Scalable Functions).

As shown in Figure 1, the switchdev design follows the
split model: a fast-path and slow-path. A NIC with advanced
offload capabilities and flow table rules is the fast-path, while
the corresponding software switch that handles initial flow
rule setup, or the miss traffic processing, is considered the
slow-path. Different vendors such as Nvidia Connect-X or In-
tel ICE supports different offload capabilities, but they follow
similar software slow-path design. Depending on the hard-
ware, the slow-path can either runs on host CPUs, or Smart-
NIC ARM cores, with either OVS or Linux bridge handling
the traffic.

The slow-path ports that handles miss traffic is called repre-
sentor netdevs, or repr, registered as a regular Linux Ethernet
device and is responsible for administratively configurations

of the fast-path vports. In typical use cases, representor net-
dev and its representee, vport, are 1-to-1 mapping: a VF/SF
has a its own netdev for fast-path traffic in host, and another
representor netdev for slow-path traffic in DPU. Such a de-
sign is reasonable with tens or hundreds of vports, but when
scaling to thousands of VFs/SFs, the memory resource be-
comes a bottleneck. For example, assuming each represen-
tor’s RXQ has 1024 entries, and each entry pointing to a 4K-
sized page. Assume the representor netdev has 4 RXQs, such
a netdev will consume 4 * 4K * 1024 = 16MB. With 1k repre-
sentor netdevs, the memory consumption can grow to 16GB
(16MB * 1024), just for RXQs and its buffers. In fact, al-
though a netdev consumes memory other than its RXQs, we
found that majority of memory comes from pre-allocation of
RXQ buffers [4], which is used to handle the burst of incom-
ing traffic.

The pre-allocation of RXQs and buffers are configured by
Linux ethtool -G/-L option, with different vendors setting dif-
ferent default value. Nvidia MLX5, by default, pre-allocates
1024 entries/depth in each of its RXQs, with each entry point-
ing to a MTU-sized buffer or a page (without striding RQ).
For Intel ICE, its default RX queue depth is 2048. We first ex-
plore a trivial memory saving solution: Reducing the number
of RXQ depth of representor netdevs, from 1024/2048 to 64
(the minimum of NAPI budget). Although this saves memory
but a burst of traffic over 64 packets will be dropped, causing
longer connection offload setup time and performance degra-
dation.

Instead of having one representor netdev per SF/VF, re-
sulting in huge memory consumption, one solution deployed
today is to redirect all the slow-path traffic from all VFs/SFs
to a single netdev, usually PF or uplink representor netdev. In
this design, the PF’s RXQs receive all slow-path traffic from
all other representors and all representors share the same set
of RXQs memory pool provided by PF. This shared RXQ of
PF design saves memory because the non-PF representors no
longer allocate their own RXQs. The design is used currently
used by Intel ICE, Netronome, Broadcom bnxt, and SFC [9]
drivers.

With shared RXQ, we are able to create 1K SFs and 1K
representor netdevs within our memory budget. However,
it’s hard to measure the performance impact and apply QoS
for each individual representors since all traffic are mixed to-
gether in the same RXQs. For example, to prioritize a critical

switchdev

uplink

vport1 vport2

vport1 vport2

VM1/
Container

VM2/
Container

NIC

Host

Software Switch
OVS / Linux bridge

PF repr

repr1 repr2

Uplink
repr

Software handles/programs
offload rules

NIC-DPU/Host

Fast-path
Slow-path

Slow-path

Fast-path

PF

Figure 1: The fast and slow path model. The switchdev
in NIC is the fast path handling hardware offloaded traffic
among VFs/SFs, and the DPU which contains representor
(repr) netdevs and software switch handles the slow path traf-
fic. The slow-path can be either in Host, or be part of the
NIC.

VM’s traffic which comes into the shared RXQ becomes im-
possible. Moreover, we found that, a VM using a VF/SF can
easily monopolize the entire shared RXQs by sending high
volume traffic, making all other VMs with VF/SF getting
zero bandwidth. We called this a fairness problem caused
by shared RXQs.

We propose a solution called adjustable RXQ with shared
page pool. We first save memory by dynamically reduce the
RXQ depth of the device drivers, and then manage all the
RXQ buffers in a shared page pool. To provide fairness, we
borrow the idea from buffer management problem in shared-
memory packet switches, where the hardware switch has a
shared memory buffer pool for all its output ports and it guar-
antees both the performance and fairness [6, 2], using a mech-
anism called dynamic threshold.

We describe background, discuss different designs, solu-
tions to the fairness problem, and finally some performance
number. The paper has the following contributions:
• Describe the existing solutions from different driver ven-

dors, with or without using shared RXQ deisgn.
• Propose adjustable RXQ design to save memory with min-

imal performance impact.
• Propose a software-based shared page pool for all netdevs,

with inherent fairness mechanism.
The paper is based on recent Linux kernel, 6.9.0, which might
evolve in the future. We welcome anyone to review and cor-
rect any content in any format (PR, or email to us)1.

Background
Eswitch and Switchdev Mode
An eSwitch, or embedded switch, is a hardware component
within modern network controllers, also known as a Virtual

1source: https://github.com/williamtu/netdevconf18-sharedmem

repr1

vport1

miss

VM send

rx

tx

vport1

repr1

DPU send

rx

tx

Figure 2: The vport (representee) and representor: packets
transmitted by the representor netdev are delivered to its vport
(right); packets transmitted by the vport are received by the
representor netdev, if it fails to match any offload rule (left).

Ethernet Bridge (VEB). The eSwitch is managed by the Phys-
ical Function (PF) driver of the Ethernet or in the case of
SmartNIC, managed by the ECPF (Embedded CPU’s PF) that
runs in the smartNIC’s core. Eswitch can operate in two
modes: Legacy mode and Switchdev mode.

Legacy mode operates based on traditional MAC/VLAN
steering rules. Switching decisions are made based on MAC
addresses, VLANs, etc. There is limited ability to offload
switching rules to hardware. On the other hand, switchdev
mode allows for more advanced offloading capabilities of the
E-Switch to hardware. In switchdev mode, more switch-
ing rules and logic can be offloaded to the hardware switch
ASIC, for example push and pop tunneling protocol, connec-
tion tracking, etc. The switchdev mode requires a slow path,
software switch such as OVS or Linux bridge, and represen-
tor netdevs that handle miss traffic. The slow-path handles
flows that can not be offloaded or miss the hardware flow ta-
ble lookup from the VFs/SFs.

Representors
A vport can be PFs (used by administrator), or VFs or SFs
(assigned to VMs or containers). When the hardware offload
table is empty or disabled, all packets are processed by the
slow path. Representor netdev and vport work as a pair and
are like a pipe, as shown in Figure 2. Packets transmitted by
the representor netdev from slow-path DPU are delivered to
its vport in fast-path; packets transmitted by the vport from
VM are received by the representor netdev, if it fails to match
any offload rule.

For example in Figure 1, VM1 would like to setup a new
TCP connection to VM2. The first TCP SYN packet sent
from VM1 misses the switchdev’s flow table, due to no
match, and arrives at the receive queue of vport1’s corre-
sponding representor netdev, repr1. OVS, in this case, with
hardware-offload enabled, will parse the protocol and insert
an offload rule, using Linux tc-flower or DPDK rte flow in-
terface. In addition, OVS also forwards/sends the packet to
the repr2 port, which will deliver the packet to vport2’s re-
ceive queue at VM2. While VM2 receives the TCP SYN from
VM1, VM2 replies with SYN+ACK, and again goes through
the slow path. Once the connection is established and flow
rules are in NIC’s flow table, the TCP data stream will be go-
ing through the fast-path in NIC, and OVS in DPU no longer

bufbuf … rxq buffers

NAPI rx
packets

max rxq depth
No buffer allocatedBuffer allocated

Refill with new pages

Figure 3: Network driver allocates buffers to fill its RX queue.
NIC DMA packet payload into the buffers and NAPI rx func-
tion process the packet, refill the queue by re-allocating new
buffers.

involves in subsequent packet processing.
Note that the slow-path is a software fall-back for the fast-

path. The behaviors applied on packets of the slow-path (rep-
resentor ports and software switch) should be the same as
fast-path (vports and switchdev). And because representor
and vport are acting like pipe, a network policy rule such as
OpenFlow on a representor netdev applies to a packet on its
receive path is the same as it applies on vport’s transmit path.

Buffer Pre-allocation for RX Queue

Network device drivers pre-allocate a circular buffers for ab-
sorbing the burstness of network traffic. Once packets ar-
rive, NIC DMAs a batch of packets into these pre-allocated
buffers, potentially hundreds of them, before the host CPU is
notified/kicked in by interrupts to process these packets. For
performance reason, NIC contains multiple RX queues with
each queue represents an NAPI context and an IRQ to kick
in to process rx packet. Usually the number of RX queues is
the same as number of CPU that involves in packet process-
ing. As shown in Figure 3, each RXQ is a circular buffers
contains several entries, with each entries point to a packet
buffer. So the amount of pre-allocated memory for RXQ is a
product of buffer size * number of queues * queue depth. A
typical example of a data center server with 64 cores would
consume memory of: 4k * 64 queues * 1k entries = 256MB,
for a single netdev.

Larger RXQ depth, or more entries in RXQ, has many ben-
efits. It helps not only for tolerating the burstness of traffic,
but also the CPU processing time/jitter of a packet. When
CPU is under heavy loading, a packet arriving RX interrupt
might not be able to immediately kick in the CPU to process
packets. In addition, each packet usually has different pro-
cessing time. The time for CPU to process a TLS packet
is definitely longer than an ARP packet. Thus, a deeper
RXQ also helps avoiding packets dropped due to intermit-
tently longer packet processing time.

However, memory is not cheap, especially when scaling to
1K devices and with 1k representor netdevs in DPU. And re-
serving several GBs of pre-allocated memory idle just waiting
for a burst of traffic or even unused when the low traffic vol-
ume is a huge resource waste. We discuss different solutions
in later sections.

RX Steering

PF’s
RXQs repr1 repr-N

All slow-path traffic

XX

Linux Network Stack

…

Figure 4: Shared RXQ Design: A PF or uplink-representor
netdev receives all slow-path traffic for other representors,
and reconstructs their skb and passes to upper network stacks.

Design
With the goal of supporting 1K of SFs/VFs with representor
netdevs on DPU, we set the following requirements: 1) 1k
netdevs creation time around 10 minutes, including configu-
rations and bringing the device up, 2) memory consumption
of DPU or host system is within system limit, and 3) all the
VFs/SFs representor get fair share of receive memory buffer,
which leads to fair share of bandwidth. The following sub-
sections presents four designs: A. Dedicated RXQ, B. Shared
RXQ of PF, C. Adjustable RXQ with shared memory pool,
and D. Shared RXQ with hardware meters.

A. Dedicated RXQ
This design is the default design with minimal or no change.
Dedicated RXQ is used in previous version of Intel ICE
before patch [10] and also the current version of Marvell
Octeontx2 [8]. In this design, each representor has its own
RXQ, and do not share its RXQ with any other representors.
The design guarantees performance isolation between repre-
sentors, but the downsides are that it 1) consumes lots of RXQ
memory in the system, and 2) some NIC hardware has lim-
itation of how many hardware RX queues it can create. For
example, Intel ICE can create up to 1k queues. If users want
to use more than 1k representors, there is not enough queues
to assign to each representor netdev.

B. Shared RXQs
Since the representor netdev only handles the miss traffic or
first few packets for connection setup, one solution is to ag-
gregate all slow-path traffic from all representor netdevs into
a single one, usually the PF representor or the uplink rep-
resentor netdev. The PF representor acts like an intermedi-
ate multiplex layer, and it sees all slow path traffic from all
other reprensentors. When packets arrive, it looks up an in-
ternal data structure to identify the original vport id of VF/SF,
reconstructs the skb-¿dev to the correct orignal netdev, and
passes up kernel stack. As a result, the non-PF or non-uplink
representor netdev no longer sees packets and no need to al-
locate RX queue, as shown in Figure 4.

This design saves huge amount of memory because most of
the representors’ RX functions are avoided, with all represen-
tors’ traffic using PF representor netdev’s RXQs. In the case
of ICE driver, even the TX function of the representors are

handled by PF representor, making other representors purely
a control/management interfaces. Different vendors have dif-
ferent implementation, but in general, the device driver needs
to do the following:

• RX Hardware Steering: instead of sending slow-path traf-
fic to each individual representors, the NIC needs to steer-
s/redirects all slow-path traffic to the PF representor netdev,
and mark the packet with its original vport information,
e.g., vport id, in metadata or packet buffer.

• RX in Driver: the PF representor netdev sees all traffic in-
cluding others arriving at its RX queues. It needs to keeps
a map of vport id to the packet’s original netdev struct. By
extracting the vport id from metadata, the original netdev
is restored to sk buff and continue kernel network stack.

• TX in Driver: because the vport and representor act like a
pipe, the PF representor netdev need to know which vport’s
RX queue the packet should be send to. Drivers can use the
dst entry of skb, or other per-packet metadata field, and
rely on internal switch to deliver the packet to the vport.

Pros and Cons: Although this design saves lots of mem-
ory by redirecting all traffic to PF representor netdev, users
need to tune the following two parameters: because it con-
sumes only one service netdev’s memory. Depending on
number of SF/VFs and traffic volume, users need to configure
two parameters of service netdev:

• the number of RXQs should increase to decrease the
chance of multiple flows from multiple vports rxhash to
the same queue, e.g., using ethtool -L combined. Most of
the drivers limit its max number of RXQs to the number of
CPUs.

• the RX queue depth should increase to absorb more traffic
burst from multiple vports, e.g., using ethtool -G rx. How-
ever, this might increase the packet processing latency.

• Reduce the NAPI schedule delay, which means NAPI can
process packets as soon as possible when packets arrived.
This lowers the chance of RXQ utilization grows to fast or
overflow. (I don’t know any tool to do this).

The design is simple to implement, but we found that it
suffers from a fairness issue. A single high volume sender,
ex: dpdk-pktgen, sending to its vport and with packets arriv-
ing at slow path, can easily consume all the buffers in the PF
representor netdev’s RXQ. And because all other representors
share the same PF’s RXQ, this makes other representor and
its vport traffic being dropped due to no available RX buffer
at all. An example setup script to show case the issue using
OVS is provided in Listing 4.

C-1. Adjustable RXQ Depth
If the shared RXQ of PF suffers from fairness issue, another
solution is to not sharing the RXQ, but think about other ways
to save memory. For every RXQ in every netdev, existing net-
work drivers implement static RXQ allocation. Whenever a
driver initializes, it always pre-allocates the number of buffers
to the full RXQ depth, and whenever a batch of packets ar-
rived and processed by NAPI poll, device driver again refills
to full by re-allocating buffers to the full RXQ depth.

…

Kernel
shared page

pool

PF repr rxq

repr1 rxq

reprN rxq

Enforce fairness

Owner of the
shared page pool

kernel

Requests pages from
the shared page pool

…
Adj. RXQ

Figure 5: The adjustable RXQ from multiple reprs requests
pages from the shared page pool. A fairness layer guarantees
each repr gets the proportional shares of the total available
memory.

To save memory, instead, the adjustable RXQ depth does
not refill to full RXQ depth, but only to a threshold value,
called low watermark. For example, the mlx5 driver, by de-
fault, always tries to allocate to full 1024 rxq buffers. With
adjustable RXQ, the following logic is applied when a driver
is receiving packets in its NAPI context:
• NAPI busy: allocate buffers and refill to full queue depth,

high watermark. The high watermark equals the max
RXQ depth set by ethtool -G rx.

• NAPI interrupt: allocate buffers and refill to low watermark
if current RXQ depth is lower than low watermark

• NAPI interrupt: do not allocate and do not refill if current
RXQ depth is higher than low watermark.
Pros and Cons: We set the low watermark to be 128

(2 * NAPI BUDGET). The low watermark means the mini-
mal available RXQ buffers to handle the worst case of traffic
burst. At driver initialization time, all queues are allocated
only up-to the low watermark. Once the first burst of traffic
arrives, users might see more packets dropped compared to
full rxq depth allocation (1024). Fortunately, a NAPI busy
state will trigger driver to refill RXQ to its full depth, making
the performance impact minimal. In this design, we pay the
performance price to save memory. The first burst traffic of
a connection definitely see more packets dropped, and once
in NAPI-busy, the driver acts the same as static RX queue
allocation.

Such a design saves memory at driver initialization, as well
as when at the NAPI-interrupt state, device driver will slowly
return RXQ buffers back to kernel due to packet arrives but
driver does not re-allocate. However, what if an RXQ is in
NAPI-interrupt state, but there is no packet arrived to trigger
returning buffers to system? Then driver needs to detect and
drain the RX queue back to the low watermark.

We implement this prototype and evaluate its impact in per-
formance evaluation section.

C-2. Adjustable RXQ Depth with Shared Page Pool
We found that the memory savings with the design of ad-
justable RXQ depth might not be enough. Currently each
RXQ creates its own kernel page pool, and in NAPI, refill-
ing the RXQ buffers by allocating a page pool entry from its
own per-queue page pool. When scaling to thousands of rep-
resentor netdevs, there is no guarantee that all the representor

netdev gets fair shares of system memory. That is, the later
created representor netdevs might see system out-of-memory
for initializing its RXQ, even with the Adjustable RXQ Depth
design.

We propose shared page pool, a layer of page pool that runs
on top of current Linux page pool APIs. The shared page pool
supports for a group of netdevs to register as user, request
buffers to use in its RXQs, and the shared memory pool fairly
allocate memory for each user based on the its current usage
and total available memory in the pool.

Figure 6 shows the idea. Assume N representor netdevs,
with each has one RXQ. In the beginning, a special netdev,
PF or uplink representor, creates the shared page pool, and
joins itself into the pool. The rest of netdevs created later
join the shared page pool, by registering itself to the pool,
and requests RXQ buffers by calling the alloc and free API to
get or put the page into shared pool. We define the following
APIs:

Creates page pool, return the handler
spp = shared_pp_create(

max_num_devs, page_pool_size, ...);

Return a user id for registerd user
spp_uid1 = shared_pp_join(spp, rep1,

qid, threshold);
spp_uid2 = shared_pp_join(spp, rep2,

qid, threshold);

Representor NAPI processes packets and
refills, and bounded by max_usage, return
-ENOMEM if overflow
shared_pp_dev_alloc_page(spp, spp_uid1);
shared_pp_dev_alloc_page(spp, spp_uid2);
shared_pp_put_page(spp, spp_uid1);

#Leave the share page pool
shared_pp_leave(spp, spp_uid1);

But how to solve the fairness issue? The problem of mul-
tiple RXQs sharing a single page pool is very similar to
the shared memory for multiple ports problem in hardware
switch [2], configured using devlink-sb [6]. Instead of hard-
ware switch memory, here we have shared page pool memory,
and in contract to switch output ports competing for shared
buffers, here it’s the RXQs from different representor netdevs.
Given the similarity, we re-use the dynamic threshold formula
to define the max number of RXQ buffers assigned for each
RXQ. That is, the max usage of a particular shared page pool
user is defined by a to alpha value below:

α = 2(to alpha−10) (1)

and the to alpha is ranged between 0 to 20, and with α, we
can get max usage below:

max usage =
α

1 + α
× Free Buffer (2)

Note that the Free Buffer means the currently available
free pages in the shared page pool. As a result, each user of
the pool have a dynamic max usage based on currently page
pool memory utilization.

…

PF repr
RXQ

reprN

HW meter Buckets

repr1
…steering

Drop if > rate

NIC Kernel

Figure 6: The design uses hardware meter in steering to rate-
limit each repr’s traffic, so the RXQ buffers won’t be monop-
olized by a particular vport/repr.

For example, assuming to alpha value is 11, so α = 2,
max usage = 1/2∗Free buffer. This mean at any given point
of time, a representor netdev can use up to half of the shared
memory pool, even if there is no other users. An as more
and more users join the shared page pool, the Free buffer de-
creases, but with each driver frees up memory after process-
ing packets, the Free buffer will increase again.

Pros and Cons: The design is simple but leaves the user to
configure the value of α. When the traffic distribution to dif-
ferent representors is uneven, a large α will limit the high
volume representor to use all the available memory, while
a smaller α value with a even traffic distribution might still
cause unfairness or some representors get no page. The pa-
per [2] is based on simulation, and we don’t have a good tool
or benchmark traffic pattern to measure the effectiveness of
the design.

Note that existing Linux page pool requires registering a
DMA device to do dma map and unmap, and because rep-
resentors all share the same DMA device, so they can share
single page pool. Other use cases are non-physical device
such as Linux veth/tun/tap.

D. Shared RXQ with Hardware meters
Another approach to solve the fairness and memory issue is to
seek for hardware support. This design is based on A. Shared
RXQ of PF, and enforces the fairness before packets arriving
the RXQ buffer. Most of the NICs supports hardware meter-
ing, which allows users to configure it as a rate limiter, either
in PPS (packets-per-second) or BPS (bytes-per-seconds). Be-
fore traffic arrives and consumes the RXQ’s buffer, the meter
rate limiter might pass the packet to continue using the shared
RXQ of PF, or, the meter rate limiter might drop the packet if
a particular flow of a vport is over its rate.

Pros and Cons: We implemented this design and realize
a couple issues. First, not all NIC hardware support meters.
The implementation is vendor-specific and comes with dif-
ferent limitations. Second, setting the right meter rate is hard.
Users usually have no prior knowledge about how fast the
DPU/CPU can process the slow path traffic, either in terms
of PPS or BPS. Setting tool low under utilizes the RXQs and
setting rate too high causes fairness issue. Finally, maintain-
ing thousands of steering rules with meters is not easy, as
the steering rules might collide with other rules with different
priorities.

Driver Implementation
Nvidia MLX5 Dedicated RXQ
Intel ICE Shared RXQs [10]
Intel ICE (before [10] Dedicated RXQ
Broadcom BNXT Shared RXQs [9]
Netronome NFP Shared RXQs [9]
Solarflare SFC Shared RXQs [9]
Marvell Octeontx2 Dedicated RXQ [8]

Table 1: Summary of existing network drivers and its repre-
sentor solution.

Implementation
Most of the network device drivers with representor imple-
ment the shared RXQ design, which saves memory at the
price of possible fairness limitation. Table 1 show a summary
different network device driver’s implementation choices.
For MLX5 driver, we’d like to propose a configuration knobs
that turns on or off the Shared RXQ, depending on users’
choice.

New Devlink Eswitch Attribte: spool-mode
Given the fairness issue, we’d like to propose a new devlink
eswitch attribute for users to enable or disable the Shared
RXQs. When memory is a precious resource such as Smart-
NIC or DPU, enabling the Shared RXQs saves the most mem-
ory as it only uses the shared RXQs. And the memory con-
sumption does not grow linearly as the number of represen-
tors grows. On the other hand, if users worry about potential
fairness issue or need performance isolation, then disabling
shared RXQ and fallback to the dedicated RXQ can solve the
problem. Below is the proposed devlink, spool-mode:

• none: Driver uses dedicated RXQ on its representor netdev.

• basic: Driver uses shared RXQs on its representor netdevs.

• spp (shared page pool): Driver uses shared page pool with
adjustable RXQ depth on its representor netdevs.

The attribute supports only in switchdev mode.
$ devlink dev eswitch set pci/0000:08:00.0 \

mode switchdev spool-mode none
$ devlink dev eswitch show pci/0000:08:00.0

pci/0000:08:00.0: mode legacy \
inline-mode none encap-mode basic \
spool-mode none

$ devlink dev eswitch set pci/0000:08:00.0 \
mode switchdev spool-mode basic

With this, existing drivers will need to consider supporting
both modes, shared RXQ mode or dedicated mode. (Or return
-ENOSUPP).

Performance Evaluation
We conduct our experiment with two servers connected back-
to-back using two x86 host, shown in Figure 7. Each host is
equipped with one dual port BlueField-2 card. Each x86 host
consists of 10 cores and 32GB of RAM. The BlueField-2 is
an 8-cores Cortex-A72, with 16GB of RAM. BlueField, by
default, in production environment, runs OVS kernel datapath

vport
ab/iperf
Client

Host

OVS vport
ab/iperf
Server

Host

OVS

DPU DPU

wire

Figure 7: Back-to-back setup with x86 host and ARM DPU
for performance evaluation.

with hardware-offload enabled. Unless mentioned, we run
all experiements with OVS hardware offload disabled. This
forces the traffic to go to slow-path representor netdevs so we
can easily measure the performance impact.

Memory Consumption
Linux kernel today provides several memory profiling tool,
such as /proc/meminfo, /proc/slabinfo. However, there is no
tool to measure how much memory is consumed by a partic-
ular network device driver, or a netdev. We start by creating
200 SF representors, and measure the difference of the total
system free mem, MemFree field in /proc/meminfo. The SF
creation and setup is done by the script in Listing 1.

Table 2 shows the memory consumption of each SF-repr
and its breakdown. We conclude that, by default RXQ depth
of 1024, one SF-repr takes 2.86MB of kernel memory, and
among the 2.86MB, 1.83 is consumed by page pool for the
RXQ buffers, around 0.11MB is consumed by firmware, and
the rest of 0.9MB is for others such as slab, ex: kmalloc, kza-
lloc, and other kernel netdev structures. When increase from
1 RXQ to 2 RXQs, the memory consumption also increases
linearly, as expected.

1RXQ total Page Pool FW 2RXQ
128 1.1 0.2 0.113 2.835
256 1.3 0.4 0.114 2.915
512 1.805 0.78 0.114 2.99
1024 2.86 1.83 0.114 5.025
2048 4.935 3.93 0.115 9.25

Table 2: Memory consumption of a SF-repr and its break-
down of page pool and Firmware usage.

Static Queue Size
Before enabling the dynamic adjustable RXQ size, we first
analyze the performance impact of statically configure dif-
ferent RXQ size, from queue depth of 64 to 2048. We ran
Apache ab benchmark [?], with client on one of the x86 host
and server on another x86 host. We disable OVS hardware-
offload in DPU so that all traffic can flow through the repre-
sentor netdev. We than statically adjust the representor net-
dev’s RXQ depth using ethtool -G.

Table 3 shows the result of Apache ab benchmark sending
1 million requests with concurrency level of 100. We report
the following metrics:
• Time to complete (sec): total time taken for completing the

1 million requests.

• out of buffers (K): a firmware counter, rx out of buffer, re-
porting number of packets dropped due to no RXQ buffer
available.

• Requests (K) / sec: average HTTP requests per seconds

• Connection Time (ms) and SD: average connection time,
including connect, processing, and waiting, of the 1 million
connections and their standard deviation (SD).

We found although larger queue depth, 1024 or 2048, con-
sumes more memory, but they performance comparatively
well, as they shows shorter time to complete, less packets
being dropped, and lower jittering (SD is smaller).

Time
to com-
plete
(sec)

out of
buffers
(K)

Requests
/ sec (K)

Conn
Time
(ms)

Conn
Time
SD

64 45.6 104 21.9 5 32
128 29.48 71 33.9 3 20
256 24.55 5.89 40.7 2 4
512 24.06 1.2 41.5 2 2.2
1024 24.09 0 41.5 2 1.9
2048 24.03 0 41.2 2 1

Table 3: Results of Apache ab benchmark with 1 million re-
quests and 100 concurrent connections, with OVS hardware
offload disabled in DPU.

Dynamic Queue Size
We implement the idea of adjustable queue side, by set-
ting the low watermark to be queue depth of 128, and high
water mark is configured between 256 to 2048, using eth-
tool -G. The mlx5 driver initializes its RXQ only to the
low watermark. When the mlx5 napi poll function detects in
busy state, it refills the RXQ to its high watermark. Otherwise
if napi poll is in interrupt state, the driver doesn’t refill at all
if the current available buffers in the RXQ is higher than the
low watermark. In interrupt mode, we only refill when avail-
able buffers in the RXQ is lower than the low watermark.

Table 4 shows the results.

Time
to com-
plete
(sec)

out of
buffers
(K)

Requests
/ sec (K)

Conn
Time
(ms)

Conn
Time
SD

256 24.6 22 40.1 2 9.6
512 24.1 2.1 41.3 2 2.9
1024 24.2 0.95 41.2 2 2
2048 23.9 0.65 41.7 2 1.8

Table 4: Result of Apache ab benchmark with 1 million re-
quests and 100 concurrent connections, using dynamic ad-
justable RXQ.

Compared Table 4 with Table 3, the dynamic queue size
shows noticeable performance difference. We first observe
that even with queue depth high watermark set to 2048, we

still see several packets drop. This is due to the driver initial-
izes only at low watermark, so the first burst of traffic defi-
nitely triggers out of buffer drops. In addition, although the
total time to complete and the average connection time are al-
most the same, the jittering (SD) is much higher due to more
packets being dropped and retransmission.

Finally, we compare 20 seconds tcp single connection per-
formance using iperf3 in Table 5. The dynamic queue size
design performs almost the same, with the worst case of drop-
ping around 8% when queue size is 2048. Note that all the ex-
periments are done by disabling the hardware offload. When
enabling hardware offload, most of the traffic are processed
in hardware and we’re not able to see any performance differ-
ence. In conclusion, we feel that the performance impact will
be even smaller in production environment when hardware
offload is always enabled.

BW Gbps (Static) BW Gbps (Dynamic)
64 3.78 2.71
128 5.23 5.19
256 6.03 6.15
512 6.25 6.40
1024 6.08 5.79
2048 6.03 5.49

Table 5: TCP bandwidth comparison of static queue size v.s
dynamic queue size, with HW offload disabled.

Discussions and Future Work
There are many ideas we are planning to try. Spinning CPU
to save RXQ buffers DIM (Dynamic Interrupt Mediation)
Shared page pool for virtual devices

Related Work
Setting the right buffer size is important for network perfor-
mance. The paper [1] provides a guideline for buffer siz-
ing in network routers based on the bandwidth delay prod-
uct. And the paper [2] proposes buffer management scheme
called Dynamic Threshold (DT) for shared-memory packet
switches. Although both papers are designed for hardware
switches/routers, we found similarities in the case of host
networking with switchdev. The buffer sizing, or sizing the
RXQ depth, is more complicated in host network as the per-
packet processing time varies a lot due to CPU workload, in-
terrupt delivery/moderation, and vendor driver implementa-
tion. However, the solution space in host networking is more
flexible as ideas can be implemented in software in stead of
hardware.

The problem PicNIC [5] tried to solve is similar, however
this work focuses on performance isolation breakage caused
by the slow-path design. Applying back-pressure or shap-
ing at switchdev vport is difficult as we only want to apply
on slow-path traffic, but the shaping rule will be applied on
both slow-path and fast-path traffic. The early drops solution
is possible using hardware meter, as discussed in the design
session.

ShRing [7], unlike this work, shares Rx buffers between
cores and not only within cores. Junction [3], similarly to

this work, shares Rx buffers to reduce memory use. But, in
contrast to this work, Junction uses a single coordinator core
to repost Rx buffers.

Conclusion
Scaling to thousands of vports with their representor netdevs
is challenging, especially in the SmartNIC/DPU deployment.
The paper shares our experience in Nvida BlueField deploy-
ment, and examines the existing solutions from various de-
vice drivers, using shared RXQ of PF, or dedicated RXQ. We
discuss each design’s pros and cons, and propose a new de-
sign called adjustable RXQ with shared page pool. We con-
clude that a huge amount of memory can be saved, by reduc-
ing default RXQ depth from 1024 to 512/256, and the perfor-
mance impact remains very little.

Acknowledgments
We’d live to thank many people for their valuable feedback,
from internally and the Linux kernel community, including
Saeed Mahameed, Jiri Pirko, Parav Pandit, Tariq Toukan,
Jakub Kicinski, Bodong Wang, Wei Bai, and Dan Jurgens.

References
[1] Appenzeller, G.; Keslassy, I.; and McKeown, N. 2004.

Sizing router buffers. ACM SIGCOMM Computer Com-
munication Review 34(4):281–292.

[2] Choudhury, A., and Hahne, E. 1998. Dynamic queue
length thresholds for shared-memory packet switches.
IEEE/ACM Transactions on Networking 6(2):130–140.

[3] Fried, J.; Chaudhry, G. I.; Saurez, E.; Choukse, E.; Goiri,
Í.; Elnikety, S.; Fonseca, R.; and Belay, A. 2024. Mak-
ing kernel bypass practical for the cloud with junction. In
21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), 55–73.

[4] Nic memory reserve. https://people.kernel.org/kuba/nic-
memory-reserve.

[5] Kumar, P.; Dukkipati, N.; Lewis, N.; Cui, Y.; Wang, Y.;
Li, C.; Valancius, V.; Adriaens, J.; Gribble, S.; Foster, N.;
et al. 2019. Picnic: predictable virtualized nic. In Proceed-
ings of the ACM Special Interest Group on Data Commu-
nication. 351–366.

[6] Pirko, J. devlink-sb(8) — linux manual page.
https://man7.org/linux/man-pages/man8/devlink-
sb.8.html.

[7] Pismenny, B.; Morrison, A.; and Tsafrir, D. 2023.
{ShRing}: Networking with shared receive rings. In 17th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), 949–968.

[8] sowjanya, G. Introduce rvu representors, marvell.
https://lore.kernel.org/netdev/20240701201215.5b68e164@kernel.org/T/m93a806be679e647f0dcbfee7edeb2fc53d2cf5cc.

[9] Survey: Documentation: devlink: Add
devlink-sd. Linux netdev mailing list.
https://lore.kernel.org/netdev/39dbf7f6-76e0-4319-
97d8-24b54e788435@nvidia.com/.

[10] Swiatkowski, M. ice: use less resources in switchdev.
https://patchwork.kernel.org/project/netdevbpf/cover/20240125125314.852914-
1-michal.swiatkowski@linux.intel.com/.

Scripts

1 #!/bin/bash

2 #ethtool --set-priv-flags p0 rx_striding_rq off

3 for i in {100..200}; do

4 devlink port add pci/0000:08:00.0 flavour pcisf pfnum

0 sfnum $i

5 done

6 for i in {100..200}; do

7 ethtool -L $dev combined 1

8 ethtool -G $dev rx 1024

9 ip link set dev $dev up

10 done

11 #optional: create SF

12 # devlink port function set $dev state active

13 # devlink dev param set auxiliary/mlx5_core.sf.$i name

enable_eth value 1 cmode driverinit

14 # devlink dev reload auxiliary/mlx5_core.sf.$i

Listing 1: SF-representor setup on BlueField

1 $./tools/net/ynl/cli.py --spec Documentation/netlink/

specs/netdev.yaml --dump page-pool-get

2 [{’id’: 673,

3 ’ifindex’: 120,

4 ’inflight’: 512, // 512 pages used for 1024 RXQ depth

5 ’inflight-mem’: 2097152, // about 2MB

6 ’napi-id’: 1179}, // each RXQ has its own NAPI-ID

7 {’id’: 674,

8 ’ifindex’: 122,

9 ’inflight’: 512,

10 ’inflight-mem’: 2097152,

11 ’napi-id’: 1180},

12 ...

Listing 2: Collect page pool usage on BlueField

1 # 1 million requests with 100 concurrency

2 $ ab -c100 -l -n 1000000 -k -l http://10.1.1.1/

3 # single TCP connection bandwidth

4 $ iperf3 -t20 -i2 -c 10.1.1.1

Listing 3: Apache ab and iperf3 test

1 #!/bin/bash

2 # similar setup for Linux bridge, but disable HW offload

by setting aging=0

3 PF1=eth2

4 VFREP1=eth4

5 VFREP2=eth5

6 VF1=eth6

7 VF2=eth7

8 NS1=ns1

9 NS2=ns2

10 setup_dev_ns()

11 {

12 ns=$1

13 vfdev=$2

14 ip=$3

15 ip netns del $ns || true

16 ip netns add $ns

17 ip link set dev $vfdev netns $ns

18 ip netns exec $ns ifconfig $vfdev ${ip}/24 up

19 }

20 test_dpdk()

21 {

22 ip netns exec $NS1 bash

23 echo 1280 > /sys/devices/system/node/node0/hugepages/

hugepages-2048kB/nr_hugepages

24 dpdk-testpmd -l 0-3 --socket-mem=512 -a 0000:08:00.2

-- -i --nb-cores=1 --forward-mode=txonly \

25 --eth-peer=0,b8:3f:d2:ba:65:9e --txpkts=64 --txq=1 --rxq=1

--stats-period=1 --txonly-multi-flow \

26 --total-num-mbufs=2048

27 exit

28

29 }

30 setup_ovs()

31 {

32 echo 2 > /sys/class/net/$PF1/device/sriov_numvfs

33 ovs-vsctl set Open_vSwitch . other_config:hw-

offload=false

34 /usr/share/openvswitch/scripts/ovs-ctl restart

35 ovs-vsctl add-br ovsbr0

36 ovs-vsctl add-port ovsbr0 $PF1

37 ovs-vsctl add-port ovsbr0 $VFREP1

38 ovs-vsctl add-port ovsbr0 $VFREP2

39 ip link set dev $PF1 up

40 ip link set dev $VFREP1 up

41 ip link set dev $VFREP2 up

42 setup_dev_ns $NS1 $VF1 192.167.111.1

43 setup_dev_ns $NS2 $VF2 192.167.111.2

44 ip netns exec $NS1 ping -i .05 -c10 192.167.111.2

45 ip netns exec $NS2 ping -i .05 -c10 192.167.111.1

46 }

47 devlink dev eswitch set pci/0000:08:00.0 mode switchdev

48 setup_ovs

49 test_dpdk

Listing 4: DPDK-pktgen consumes all RXQ

