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Agenda

➢ LinuxPTP

➢ netdevsim

➢ ptp_mock

➢ LinuxPTP in Netdevsim

➢ Limitations & Use-cases

➢ Demo




Required components (usually)

➢ Hardware clock

➢ Driver for the HW clock

➢ NIC with timestamping

➢ Timestamping mechanism generating

➢ Tx timestamps

➢ Rx timestamps




LinuxPTP

➢ Phc_ctl

➢ modify the PHC (PTP HW Clock)

➢ Ts2phc

➢ synchronize PHC to the external source

➢ Phc2sys

➢ synchronize system time to the PHC

➢ Ptp4l

➢ synchronizes two (or more) PHCs




LinuxPTP

➢ Phc_ctl

➢ gettime, settime, adjtime, adjfine, max_adj

➢ Ts2phc

➢ n_ext_ts, n_per_out, n_pins, enable, verify

➢ settime, adjtime, adjfine, max_adj

➢ Phc2sys

➢ gettime, getcrosststamp

➢ Ptp4l

➢ gettime, settime, adjtime, adjfine + Tx/Rx timestamping




netdevsim

➢ Simulated networking device

➢ Used for testing APIs without requiring capable hardware

➢ Emulate different hardware offloads

➢ Recently implemented packet forwarding between instances




ptp_mock

➢ Common mock-up PTP Hardware Clock (PHC) driver

➢ Implements PTP Hardware Clock for virtual network devices

➢ Creates an object that emulates the PTP clock

➢ Emulates PHC using timecounters subsystem

➢ Mathematical overlay over CLOCK_MONOTONIC_RAW




ptp_mock

➢ Allows 

➢ Setting virtual time

➢ Reading virtual time

➢ Changing virtual frequency




Testing a PHC driver

➢ phc_ctl

➢ set - Set the PHC time

➢ get - Get the PHC time

➢ freq - Frequency adjust

➢ Example

➢ phc_ctl /dev/ptp0 freq 100000000 set 0.0 wait 10.0 get




Required components (usually)

➢ Hardware clock     CLOCK_MONOTONIC_RAW

➢ Driver for the HW clock    ptp_mock

➢ NIC driver      netdevsim

➢ Timestamping mechanism generating

➢ Tx timestamps     

➢ Rx timestamps

➢ IOCTL support
} missing in netdevsim




What’s next

➢ We have the PTP Hardware Clock

➢ …and we can forward packets

➢ What if we connect them and mock timestamping?





Trust me! I’m an architect!

CLOCK_MONOTONIC_RAW

Timecounter translation

PHC clock

phc_mock

netdevsim

ethtool API

Tx timestamps from phc_mock

Rx timestamps from phc_mock

Link to relevant phc_mock

set/get timestamp mode
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PTP implementation in netdevsim
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Step 1: Connect PHC to netdev

➢ Implement a proper connection between the PHC and the netdev

➢ ptp_mock needs to expose the phc->info structure

➢ Internal PTP APIs, such as gettime() require struct ptp_clock_info, which is 

not accessible for the netdevsim

➢ So far, the connection between netdevsim and ptp_mock was loose

➢ netdevsim was not doing anything with the allocated clock




Step 1: Connect PHC to netdev




Step 2: set/get timestamp mode

➢ Set/get the configuration of timestamps

➢ Enable/disable timestamps

➢ Set HW timestamp filters

➢ Fallback to FILTER_ALL if no filters are supported in the HW





Step 2: set/get 
timestamp mode




Step 2: set/get timestamp mode




Step 3: Tx timestamping

➢ Transmit timestamps need to read the current time from the PHC allocated 

by the netdev

➢ But only when timestamping mode is enabled

➢ Need to keep the original SKB to return Tx timestamp back to the stack

➢ skb_tstamp_tx

➢ Only after that – release Tx SKB




Step 3: Tx timestamping




Step 4: Rx timestamping

➢ Receive timestamp needs to read the time of the peer’s PHC

➢ Forward a copy of an SKB to pass it to the peer




Step 4: Rx timestamping




Step 5: ethtool




Step 5: ethtool 




Running ptp4l

➢ Connected netdevsims require namespaces

➢ So we need to run ptp4l in namespaces

➢ Easy setup – reuse the peer.sh script

➢ Creates two namespaces

➢ And two netdevs

➢ And connects them

➢ Remove everything else that tries to clean-up or send data ☺




Limitations

➢ Low Timestamp quality

➢ ptp4l master offset ~300/400

➢ Traffic passed only when netdevsim interfaces are assigned to namespaces




Use-cases 

➢ Netdevsim + PTP allows to validate PTP solutions without HW access

➢ Enable LinuxPTP development without HW acess

➢ Debugging

➢ Present required kernel APIs

➢ Kernel self-tests




Next steps

➢ Upstream

➢ Improve timestamp quality

➢ With timecounters API and a single CLOCK_MONOTONIC_RAW sample




Demo
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