

PTP
from

scratch

Milena Olech

Maciek Machnikowski

Agenda

➢ LinuxPTP

➢ netdevsim

➢ ptp_mock

➢ LinuxPTP in Netdevsim

➢ Limitations & Use-cases

➢ Demo

Required components (usually)

➢ Hardware clock

➢ Driver for the HW clock

➢ NIC with timestamping

➢ Timestamping mechanism generating

➢ Tx timestamps

➢ Rx timestamps

LinuxPTP

➢ Phc_ctl

➢ modify the PHC (PTP HW Clock)

➢ Ts2phc

➢ synchronize PHC to the external source

➢ Phc2sys

➢ synchronize system time to the PHC

➢ Ptp4l

➢ synchronizes two (or more) PHCs

LinuxPTP

➢ Phc_ctl

➢ gettime, settime, adjtime, adjfine, max_adj

➢ Ts2phc

➢ n_ext_ts, n_per_out, n_pins, enable, verify

➢ settime, adjtime, adjfine, max_adj

➢ Phc2sys

➢ gettime, getcrosststamp

➢ Ptp4l

➢ gettime, settime, adjtime, adjfine + Tx/Rx timestamping

netdevsim

➢ Simulated networking device

➢ Used for testing APIs without requiring capable hardware

➢ Emulate different hardware offloads

➢ Recently implemented packet forwarding between instances

ptp_mock

➢ Common mock-up PTP Hardware Clock (PHC) driver

➢ Implements PTP Hardware Clock for virtual network devices

➢ Creates an object that emulates the PTP clock

➢ Emulates PHC using timecounters subsystem

➢ Mathematical overlay over CLOCK_MONOTONIC_RAW

ptp_mock

➢ Allows

➢ Setting virtual time

➢ Reading virtual time

➢ Changing virtual frequency

Testing a PHC driver

➢ phc_ctl

➢ set - Set the PHC time

➢ get - Get the PHC time

➢ freq - Frequency adjust

➢ Example

➢ phc_ctl /dev/ptp0 freq 100000000 set 0.0 wait 10.0 get

Required components (usually)

➢ Hardware clock CLOCK_MONOTONIC_RAW

➢ Driver for the HW clock ptp_mock

➢ NIC driver netdevsim

➢ Timestamping mechanism generating

➢ Tx timestamps

➢ Rx timestamps

➢ IOCTL support
} missing in netdevsim

What’s next

➢ We have the PTP Hardware Clock

➢ …and we can forward packets

➢ What if we connect them and mock timestamping?

Trust me! I’m an architect!

CLOCK_MONOTONIC_RAW

Timecounter translation

PHC clock

phc_mock

netdevsim

ethtool API

Tx timestamps from phc_mock

Rx timestamps from phc_mock

Link to relevant phc_mock

set/get timestamp mode

PTP
timeTransmitter timeReceiver

T0 T0 + delta T

T1

T2

T3

T4

TX

Timestamp

RX

Timestamp

TX

TimestampRX

Timestamp

PTP implementation in netdevsim

ptp4l

Network

stack

netdevsim1

phc_mock 1

netdevsim2

phc_mock 2

user

kernel

Sync + timestamp request

SKB with timestamp

request,

Get my PHC time

for TX timestamp

Network

stack

ns1 ns2

TX timestamp

TX timestamp

ptp4l

Receive Sync packet

with RX tstamp

Step 1: Connect PHC to netdev

➢ Implement a proper connection between the PHC and the netdev

➢ ptp_mock needs to expose the phc->info structure

➢ Internal PTP APIs, such as gettime() require struct ptp_clock_info, which is

not accessible for the netdevsim

➢ So far, the connection between netdevsim and ptp_mock was loose

➢ netdevsim was not doing anything with the allocated clock

Step 1: Connect PHC to netdev

Step 2: set/get timestamp mode

➢ Set/get the configuration of timestamps

➢ Enable/disable timestamps

➢ Set HW timestamp filters

➢ Fallback to FILTER_ALL if no filters are supported in the HW

Step 2: set/get
timestamp mode

Step 2: set/get timestamp mode

Step 3: Tx timestamping

➢ Transmit timestamps need to read the current time from the PHC allocated

by the netdev

➢ But only when timestamping mode is enabled

➢ Need to keep the original SKB to return Tx timestamp back to the stack

➢ skb_tstamp_tx

➢ Only after that – release Tx SKB

Step 3: Tx timestamping

Step 4: Rx timestamping

➢ Receive timestamp needs to read the time of the peer’s PHC

➢ Forward a copy of an SKB to pass it to the peer

Step 4: Rx timestamping

Step 5: ethtool

Step 5: ethtool

Running ptp4l

➢ Connected netdevsims require namespaces

➢ So we need to run ptp4l in namespaces

➢ Easy setup – reuse the peer.sh script

➢ Creates two namespaces

➢ And two netdevs

➢ And connects them

➢ Remove everything else that tries to clean-up or send data ☺

Limitations

➢ Low Timestamp quality

➢ ptp4l master offset ~300/400

➢ Traffic passed only when netdevsim interfaces are assigned to namespaces

Use-cases

➢ Netdevsim + PTP allows to validate PTP solutions without HW access

➢ Enable LinuxPTP development without HW acess

➢ Debugging

➢ Present required kernel APIs

➢ Kernel self-tests

Next steps

➢ Upstream

➢ Improve timestamp quality

➢ With timecounters API and a single CLOCK_MONOTONIC_RAW sample

Demo

	Default Section
	Slide 1: PTP from scratch
	Slide 2: Agenda
	Slide 3: Required components (usually)
	Slide 4: LinuxPTP
	Slide 5: LinuxPTP
	Slide 6: netdevsim
	Slide 7: ptp_mock
	Slide 8: ptp_mock
	Slide 9: Testing a PHC driver
	Slide 10: Required components (usually)
	Slide 11: What’s next
	Slide 12: Trust me! I’m an architect!
	Slide 13: PTP
	Slide 14: PTP implementation in netdevsim
	Slide 15: Step 1: Connect PHC to netdev
	Slide 16: Step 1: Connect PHC to netdev
	Slide 17: Step 2: set/get timestamp mode
	Slide 18: Step 2: set/get timestamp mode
	Slide 19: Step 2: set/get timestamp mode
	Slide 20: Step 3: Tx timestamping
	Slide 21
	Slide 22: Step 4: Rx timestamping
	Slide 23: Step 4: Rx timestamping
	Slide 24: Step 5: ethtool
	Slide 25: Step 5: ethtool
	Slide 26: Running ptp4l
	Slide 27: Limitations
	Slide 28: Use-cases
	Slide 29: Next steps
	Slide 30: Demo

