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Abstract 

Virtio network devices are fundamental building blocks of 
cloud VMs. They have evolved from para-virtual devices to 
vDPA to hardware PCI devices, such as PCI physical and 
virtual functions. These PCI virtual functions are commonly   
attached as pass-through devices using the VFIO subsystem 
to VMs. Live migration of a VM with pass-through virtual 
functions is necessity of hypervisor infrastructure. This talk 
presents our journey, covering various design aspects, im-
plementation challenges, their possible solutions, and per-
formance benchmark results. 
  
In this talk we highlight certain design considerations which 
steered the specification draft and its implementation. We 
also compare key differences of our approach with a vdpa 
vendor-based approach and briefly with the IDPF. This 
technical paper presents the live migration performance 
metrics for the first time globally for virtio PCI devices with 
IOMMU based dirty page tracking. We also discuss 
performance benchmark results from one to multiple 
devices and how the pre-copy approach further reduces 
migration downtime. Finally, we discuss the current 
progress of the Virtio specification developed by the open 
standards OASIS community. We conclude this talk by 
sharing our lessons learned from developing code and 
specifications in tandem, closing the gaps and discussing the 
trade-offs of various approaches. 
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1. Introduction 
Virtio network devices [1] are fundamental building blocks 
of a cloud VM. They have evolved from para-virtual devices 
to vDPA [2] to hardware PCI devices, such as PCI physical 
functions and PCI virtual functions [3]. These PCI virtual 
functions (VFs) are commonly attached as pass-through 
devices using the VFIO drivers [4] to a VM. Live migration 
of a VM with pass-through virtual functions is necessity of 
hypervisor infrastructure. However, passthrough hardware 
based virtual functions possess a challenge to migrate the 
VMs because such hardware device state is no longer part 
of a VM’s memory. To migrate such a VM, the PCI device 
must have infrastructure accessible to the hypervisor so that 

source hypervisor can read the PCI device state and setup 
the same on the destination hypervisor. Our design covers 
the virtio specification extensions to support device 
migration functionality for the PCI VF devices. We discuss 
the design principles, specification proposal key elements, 
and its performance analysis using Nvidia bluefield-3 
DPUs. 
 
The requirements and design principles are described in 
section 2 which influences the migration interface design. 
We propose a migration interface using a PCI PF to handle 
the migration of the virtio device state of a PCI VFs. This 
migration interface can read or write the device state. 
Reading the device state is typically done after the PCI VF 
is stopped by source hypervisor. Device state is written 
when the PCI VF is stopped by the destination hypervisor. 
A PCI PF can stop or resume the PCI VF on an instruction 
from the migration stack. We also propose an open standard 
device state definition which consist of common and device 
type specific attributes which is migrated from the source to 
destination hypervisor and finally written to the device 
before resuming the device. This design is further described 
in section 3. 
Section 4 compares virtio PCI device migration of our 
design with vendor specific vdpa approach using 
ConnectX6-DX device. In this section we show that though 
vdpa is useful for certain use cases, virtio PCI device based 
live migration has far less software components, lower 
number of operations during the VM downtime and 
eliminates traffic disruptive operation on the source 
hypervisor. This design results a better user experience and 
lower VM downtime. Section 5 brings a short comparison 
with the IDPF migration paper [25] presented in the 
netdev0x17. 
Section 6 focuses on describing the various performance test 
results for measuring the VM downtime for various vCPU, 
memory, and device scale per VM configuration. We run 
performance tests with and without device pre-copy 
methods. We showcase that enabling device pre-copy mode 
that copies the device state while the VM is running delivers 
494% reduction in the VM downtime for large scale VM and 
340% reduction at small scale of 1 device per VM. 
We finally summarize in section 7 the current state of drafted 
specifications, next steps of open-source drivers, certain 
improvement areas and future direction and lessons learned 
in the project. Section 8 concludes the discussion 
summarizing the modular and reusable building blocks, 
design simplicity and performance gain. 
 



 

 

2. Design principles 
The device migration interface design is based on four 
fundamental design requirements: 

a. Achieve the lowest guest VM downtime. 
b. Attain scalability, performance, and lower power 

consumption of the migration interface. 
c. virtio-net features and other device extensions to 

have minimal changes to the migration interface. 
d. Cloud operator to have single device migration 

framework covering multiple device types of 
NICs, GPUs, storage and other passthrough 
devices. 

e. Lay the groundwork for supporting PCIe IDE, 
TDISP protocol, multi-PF NICs [5] to the guest 
VMs. 

 
We considered the following design principles when 
defining the device migration interface between the driver 
and the device to address the above requirements: 

1. Near O(1) downtime regardless of the number of 
devices in the guest VM. A guest VM may have 
one or more virtio devices of various types, each 
with numerous resources. For a virtio-net device, 
these resources include virtio transmit and receive 
queues, various queue attributes including their 
addresses, interrupt moderation attributes, RSS 
configuration, VLAN filter table, MAC filter table, 
and MAC address configuration. Unlike 
paravirtual software-based devices, where every 
configuration is nearly a memory access, in a real 
PCI hardware-based device, resource query and 
configuration are often a slow compared to 
memory access. This is because it involves 
programming one or more hardware ASIC 
modules, which include logic gates, TCAM, 
address translation modules, cache updating, 
finding optimal resources on a chip, and isolating 
these resources by setting up necessary access 
control guards. As the virtio-net device evolves, it 
is likely to have more device resources directly 
accessible from the guest VM, such as flow filters 
as proposed in [6]. Reading and writing more 
resources using a migration interface may result in 
an increased latency from the device of the 
migration commands. Therefore, a migration 
interface is needed that can amortize the high 
latency of accessing the device during the 
migration phase compared to nanoseconds level 
memory accesses from the hypervisor CPU’s 
address space. Such an interface will have a direct 
effect on reducing VM downtime.  

2. The migration interface should perform the 
minimal number of operations once the device is 
stopped on the source hypervisor, and a similarly 
minimal number of operations on the destination 
hypervisor while resuming the device. VM 
downtime is directly proportional to the number of 
operations during the time window when the VM 

is stopped on the source hypervisor and resumed 
on the destination hypervisor. 

3. It is cited that SR-IOV VFs may reach a scalability 
limit beyond several thousand VFs due to the 
burden of on-chip configuration space limits, the 
MSI-X table accessible in the CPU address space, 
and the symmetrical configuration of the VF. To 
overcome this limit, scalable IO virtualization 
(SIOV) is being developed by the industry [7]. A 
migration interface should have only minimal 
differences when migrating either an SR-IOV 
virtio VF or a SIOV virtio function. 

4. Although our research and experiments largely 
focused on the virtio-net device, we recognize that 
a guest VM often hosts various types of virtio 
devices in a cloud deployment, including virtio blk 
and virtio file system devices. A migration 
interface should be capable of migrating such non-
virtio-net devices as well without requiring any 
additional changes. 

5. A guest VM often deploys multiple PCI devices 
with different capabilities in a cloud environment. 
For example, a VM may include two virtio-net 
devices, each facing different networks in the data 
center: one connected to the data center's internal 
network, known as east-west communication, and 
the other connected to the external network, known 
as north-south communication. Alternatively, a 
guest VM may host multiple non-virtio devices 
such as RDMA [8], GPUs, or NVMe devices [9] as 
passthrough devices. It is crucial for the cloud 
system to utilize live migration stack across all 
device classes, thereby leveraging a common 
software stack in the hypervisor for all different 
device types, instead of creating and using a 
custom migration framework for each device type. 

6. The addition of features to virtio-net devices has 
been on the rise in recent years. When a virtio-net 
VF device introduces a new feature, it is vital not 
to require upgrades to the migration stack to 
support migrating a device with this new feature. 
Such an interface results in a simpler device and 
migration driver design. Failure to adhere to this 
principle leads to software maintenance 
challenges, compatibility issues, and constant 
upgrades of the migration stack. 

7. A guest VM may perform a virtio-level device reset 
while the migration interface needs to access the 
device, unaware of any ongoing migration as it 
must be transparent to the guest VM. Therefore, 
any migration interface should be designed such 
that a virtio device reset does not disrupt it. 
Similarly, a guest VM may perform a PCI VF level 
function level reset (FLR). Such PCI level 
operations must not affect the migration either. 
Additionally, an advanced VF may support PCI 
power management capabilities, allowing the VF 
to stop or resume the device directly. To support 



 

 

such a scenario, the migration interface must not be 
halted when the VF is suspended. Furthermore, 
having a migration interface replicated on each of 
the VF that needs to be functional during the 
suspended state of the VF could exceed the PCI 
power budget envelope. 

8. We anticipate that critical cloud applications in the 
guest VM would prefer to run without exposing 
data to the hypervisor system. The migration 
interface should not compromise the PCIe TDISP 
state machine to achieve confidential computing 
use cases and continue to support PCIe IDE. 
Therefore, the design of the migration interface 
must be independent of the VF itself, as a VF in the 
CONFIG_LOCKED state would not be directly 
accessible to the migration interface in the 
hypervisor. 

9. A guest VM may have other devices that directly 
access the virtio-net device by performing driver 
notifications, also sometimes known as PCIe peer-
to-peer communication [10]. It is essential for the 
migration interface to support such notifications 
while stopping the VM, because stopping a VM 
with multiple passthrough devices requires halting 
several devices simultaneously, which is not an 
atomic operation. 

10. Only a handful of CPU/IOMMU platforms [11], 
[12] are capable of tracking memory writes 
performed by the IO device, often known as dirty 
page tracking. Virtio-net VF devices are used 
across many generations of CPUs, some of which 
may lack the ability to track pages written by 
devices. Therefore, migration interface to have 
optional capability to perform dirty page tracking 
for memory written by the device. 

3. Design 
Following these design principles, we developed 
straightforward virtio device interface requirements 
described in the following section: 

a. An asynchronous queuing interface between the 
driver and the device that can issue migration 
commands to handle migrating devices. 

b. Capability to issue one or more outstanding 
commands through this queuing interface. 

c. Given that it must handle virtio device reset and PCI 
VF FLR without any mediation, the asynchronous 
interface should be separate from the PCI VF devices 
and PCI SIOV devices. 

d. The interface should be able to suspend and resume 
the PCI VF. 

e. The interface should be able to read and write the 
device state that can be migrated from source to 
destination via the DMA interface. 

f. A device state structure that can be extended for new 
features and functionality, which the hypervisor 
driver can also decode and encode as necessary. This 
structure allows different cloud providers to program 

their virtio devices so that they are identical on both 
the source and destination systems for the PCI VF. 

g. A device state structure that accommodates common 
fields across different types of virtio devices and 
avoids duplication of these fields across different 
device types. 

 
It turned out that these requirements can be easily addressed 
by implementing a migration interface on the PCI PF 
through an administration queue and a command interface 
for migrating PCI VFs. Such an interface has broader 
applications beyond migration. Therefore, as part of the 
open standards community, several technical committee 
members have designed a virtio administration command 
and a queuing interface. Our design introduces two main 
building blocks. 
 
1. The ability to get and set the device parts. 
2. The ability to stop and resume the virtio device. 
 
We also observe a similar demand in the industry for 
analogous design concepts, as indicated in [27], which 
supports the idea of migration based on the device state. Our 
findings indicate that our design achieves efficiency by 
utilizing Virtual Functions (VFs) or Scalable I/O 
Virtualization (SIOV) devices at each nested layer and their 
associated synthetic Physical Functions (PFs) through the 
design outlined in [26]. This approach ensures resource 
control and adheres to the principle of equivalency at all 
nesting layers by implementing hypervisor-level control for 
migration and pass-through devices to the guest VM. 
Although our design employs the PCI PF as the migration 
interface in a hypervisor, it is not confined to the PCI PF or 
the hypervisor itself. Future systems could delegate such 
tasks to other trusted PCI functions that possess migration 
capabilities and may not be directly accessible to the 
hypervisor. For instance, a PCI PF with a migration interface 
could be mapped as a pass-through Trusted Device Interface 
(TDI) to a Trusted Virtual Machine (TVM). 

Device parts 

A device state is composed of multiple device parts, which 
can be read or written by the migration interface. Our design 
facilitates the exchange of these device parts from the source 
to the destination during the migration phase. Each device 
part represents the runtime state of the device. Device parts 
are categorized in two ways: 

1. Common device parts. 
2. Device type-specific device parts. 
 

Each device part is structured in a generic type-length-value 
(TLV) format, allowing each part to be of variable length 
and identified by its own type. A length field also enables 
the extension of the device part format in the future if 
necessary. 
 



 

 

1. Common device parts 
Virtio devices come in many different types. According to 
the virtio specification, there are at least 19 distinct device 
types. Common device parts define attributes that are shared 
across all device types. This approach prevents the 
duplication of definitions for common parts across all 
devices. 
 
2. Device type specific device parts 
This category of device parts is specific to a given device 
type. This enables extendibility of new feature for every 
device type. 
 
Certain device parts are exchanged only for informational 
purposes and validation. A virtio VF device is provisioned 
with specific attributes that are read-only for the driver 
accessing the VF. These attributes are also read-only for the 
migration interface and are optional. The migration interface 
at the source hypervisor may choose to exchange these 
attributes, and the destination migration interface can verify 
them to ensure that they match exactly what is provisioned 
on the destination. This optional feature helps to detect 
errors in-band at an early stage of the device migration 
phase. 
 
Certain stateful virtio devices such as virtio-fs may as well 
implemented the needed storage for maintaining the device 
state, hence a device parts based method for handling the 
device state on destination is no longer a problem for 
hardware based design as once thought in slide_41 in [13], 
for examples multiple DPUs [14], ]15] and [16] implements 
64B, 16B and 16GB of DDR memory for accelerating the 
cloud networking workloads. Therefore, on demand 
consumption of device parts memory on the NIC during 
short device migration duration is optimized. Also, certain 
cloud platform [17] may support suspend and resuming the 
VM through the PCI VF power management which would 
also require storage of the device state in the device. In our 
design we abstracted this memory using the device get and 
set parts resources. The migration interface driver allocates 
the resources indicating to the device the type of memory to 
allocate and keep track of for migration. 
 
Device migration flow 
Device migration flow involves several steps on both the 
source and destination hypervisor systems. Some steps 
occur while the VM is actively accessing the virtio-net 
device and performing high-bandwidth packet operations, 
while others take place after the device and the VM have 
been suspended.  
For a single device migration, a typical flow is as follows: 

1. The source hypervisor retrieves all device parts while 
the device and VM are running. 

2. The destination hypervisor stops the device 
identified for migration and mapped to the guest VM. 

3. The destination hypervisor configures all writable 
device parts on the destination device while it is 
stopped. 

4. Steps 1 and 2 may be repeated multiple times by the 
hypervisor while the VM is still running, depending 
on the amount of system memory yet to be migrated. 
Steps 1 and 2 are often referred to as the pre-copy 
stage. 

5. Once the source hypervisor decides to stop the VM 
for migration, it suspends both the VM and the 
device. 

6. The source hypervisor then retrieves all the device 
parts one final time and transfers them to the 
destination hypervisor. 

7. The destination hypervisor sets the device parts on 
the device and resumes its operation. 

 
To summarize, a device migration downtime is a function 
latency of commands to: 

1. Stop the source device. 
2. Get all the device parts of the source device. 
3. Set all the device parts on the destination device. 
4. Resume the destination device. 

 
In this design, the destination migration interface receives 
the device parts multiple times and is expected to set them 
multiple times. However, in most production cloud 
environments where applications are running user 
networking and compute workloads, there are no changes in 
the device parts between two consecutive readings. 
Consequently, except for the initial operation of setting the 
device parts, all subsequent settings effectively become no-
ops, resulting in very minimal device setup time. This pre-
copy technique, applied similarly to how a standard VM 
applies it to VM memory, achieved a 340% reduction in VM 
downtime compared to when pre-copy is disabled. More 
detailed performance analysis is discussed later in the paper. 
 
In the rare event that the device parts are changed while 
being set for the second time, the device only applies 
changes with respect to the previous setting. This approach 
effectively amortizes the device setup latency. 
 
Software stack 
Our migration interface design is using the VFIO [18] UAPI 
to achieve the passthrough device access to the guest VM by 
extending the existing vfio-virtio driver [19]. VFIO based 
passthrough has been a most common way in Linux kernel 
for more than a decade which supports implementing 
migration interface, which is implemented by many other 
PCI devices [20] and also offers a user space friendly 
interface in [21]. 
As shown in Figure 1, virtio net PCI VF is passthrough to 
the guest VM via VFIO fd. VFIO fd is composite software 
interface that consists of VF specific configuration space 
access, control + data plane access and migration interface. 
This UAPI implementation in the virtio-vfio driver interacts 
with the migration administration commands provided by 
the virtio PCI driver using administration queue. 
This approach also uses the recently added iommufd [22] 
interface which collects the dirty page tracking information 



 

 

from the CPU’s iommu via the IOMMU driver, here the 
pages are the one which is accessed by the virtio net devices 
and also any other passthrough device to the same guest 
VM. 

 
Figure 1. software stack using virtio VFIO driver for device 
migration and iommu fd for dirty page tracking. 
 

4. Virtio PCI Device vs ConnectX 
vdpa 

We analyzed a device migration for an Nvidia ConnectX-
6DX vdpa, which is useful in many ways. However, it 
addressed limited use cases and requirements. We began our 
research by profiling the migration sequence, which 
involves the following operations: 

1. Stop the source device. 
2. Reconfigure the queues addresses again on the 

source device to use the new shadow virtqueue 
addresses located in the hypervisor memory. 

3. Resume the source device. 
4. Stop the source device. 
5. Setup the queues and configuration on the 

destination device. 
6. Resume the destination device. 

 
Compared to the vdpa device-based migration, our device 
parts based designed has following differences: 
(a) VM downtime reduction 

Our design eliminated two latency sensitive operations 
on the source hypervisor. First, it eliminated the 
operation #2 and #3 and #4. 

(b) When comparing the number of operations and their 
latency, it might be noted that queue reconfiguration 
and device setup are also performed in our design on 
the destination hypervisor. However, the main 
difference compared to the vdpa approach is: 

A. In the vdpa approach, these traffic-disruptive 
reconfiguration operations are conducted on the 
source hypervisor while the VM is running. In 
contrast, our design performs these operations 
on the destination hypervisor, where the VM 
will be migrated without traffic disruption. 

B. The hypervisor may intercept virtio driver 
notifications (also informally known as 
doorbells from the driver to the device) to 
capture and process the guest VM driver posted 
descriptors. To avoid race conditions, these 
notifications typically result in numerous 
VMEXIT calls during VM migration. Our 
design eliminates these VMEXITs. 

(c) Eliminated vendor-specific driver: 
Our design eliminated the Mellanox ConnectX-6DX 
specific vdpa driver on the hypervisor, which depended 
on a rapidly changing kernel and mlx5 core driver. This 
reduction significantly decreases the constant 
maintenance overhead. A cloud operator in the 
hypervisor now uses a single virtio driver for all virtio 
device types regardless of underlying producer of the 
virtio NIC. 

(d) Hypervisor CPU utilization savings: 
A guest VM equipped with a 100Gbps virtio net device 
at 1500 bytes packet rate, emits 8.3 million descriptors 
in each direction across 64 transmit and receive queues, 
all of which the hypervisor must track. This tracking 
accounts for an average of 4% of the CPU utilization 
dedicated to reposting the descriptors, which is a fair 
amount of CPU resource loss on the cloud system. 
These descriptors are already present in the guest VM 
virtio rings; hence our design didn’t have to track any 
of it. 

(e) Rather than using the hypervisor CPU for shadow 
virtqueue tracking, our design relies on the 
CPU/IOMMU memory write tracking (also known as 
dirty page tracking) capability to monitor memory 
written by the device and migrate it to the destination. 
This simplification extends to two different CPU 
platforms, Intel Sapphire Rapids and AMD Genoa. 
However, this benefit is not available on slightly older 
generation CPUs, which are widely deployed but lack 
the memory tracking capability. 

(f)   In the cloud deployment use case, we anticipate 
supporting NUMA topology-aware virtio VFs which 
are recently introduced as multi-PF NICs [4] for the 
guest VMs. Composing such PCI devices again from 
the QEMU layer is redundant, error-prone, and 
complex, especially when they are already available as 
part of the platform. Our proposed device migration 
design achieves such platform enhancements at no 
additional engineering cost because the device 
migration abstraction is implemented at the PCI device 
level. 

5. Virtio PCI Device vs IDPF 



 

 

We only compared the design of virtio migration interface 
vs the IDPF [25]. Both the designs are very similar in nature 
using VFIO subsystem. 
They key difference from IDPF [25], is that our design 
utilized IOMMUFD based dirty page tracking mechanism 
and started with simple approach. 
The second difference is, in our design we have bring the 
notation of device migration circuitry through an abstraction 
of resource objects. It is left to the NIC hardware vendors to 
implement such an object as memory, compute or mix of 
these resources in the hardware. Our design also exposes 
these resource capabilities of the migration interface to 
decide on when to fail migration on unavailability of the 
resources. 
Since the device parts are a generic infrastructure, it can be 
used beyond migration interface for debugging as well as 
they are connected to the resource objects, where some 
resources can be used for migration and others for 
debugging. It is unclear from the IDPF [25], if the mailbox 
channel commands is generic enough for accessing the 
device parts. 

6. Performance evaluation 
We measured and analyzed the performance on various 
system level parameters. Our performance micro 
benchmarks were considering following parameters with 
active network traffic for bandwidth measurements with a 
link speed of 200Gbps. 

1. 1 to N device scale per VM 
2. 1 to M number of channels per netdevice with active 

traffic upto 200Gbps per VM. 
3. 1 to K multiple vCPUs per VM 
4. Varying amount of memory per VM to observe the 

effects on the dirty page tracking by the IOMMU 
and to observe any side effects of non-dirty pages. 

 
System configuration: 
CPU: AMD Genoa 
QEMU: 9.1 
Hypervisor OS: Linux kernel 6.8 + vfio virtio driver 
Guest VM: Oracle Linux 8.4 
Performance tool: iperf, iperf3 
 
We analyze various performance test results with and 
without enabling the device pre-copy while keeping 
memory pre-copy enabled. This gave the insights into the 
benefits and contribution of device pre-copy in supporting 
multiple devices. Figure-3 shows when the number of 
devices is changed from 1 to 4 per guest VM, the VM 
downtime stayed in the boundary of 128msec to 334msec 
when device pre-copy is enabled. When the device pre-copy 
is enabled for 4 devices, each with 32 netdevice channels, 
the VM downtime decreased by 519% from 1735msec to 
334msec compared to device pre-copy disabled. 
 

 
Figure 2. VM downtime with respect to number of devices and 
number of netdevice channels per VM, with device pre-copy 
enabled/disabled. 
 
We also analyzed the effect on the total VM migration time 
with device pre-copy enabled and disabled with respect to 
other VM resources such as memory and vCPU and number 
of virtio net devices passthrough to the VM. Columns 10 
and 11 in the Figure 3 shows that increasing the number of 
devices from 2 to 4 while keeping the same number of 
vCPUs and VM memory, total VM migration time nearly 
doubles when device pre-copy is enabled. This is because of 
setting up the device on the destination during the pre-copy 
phase. In the second observation, columns 11 and 12 in 
Figure 3 shows that increasing the VM memory from 64GB 
to 128GB while keeping the same device configuration and 
same workload also increases the total VM migration time. 
It can be concluded that either of increasing the VM memory 
or device configuration has equal effect on the VM total 
migration time, but no effect on the VM downtime due to 
pre-copy enablement. Interestingly with the pre-copy 
disabled, for smaller CPU count and memory, there is nearly 
no impact on the total migration time of a VM, however as 
the CPU, memory and device count increases beyond 16 
vcpus and 16GB memory, with larger queue count, the VM 
migration time increases with larger resource usage. 
 

 
Figure 3. VM downtime with respect to device count, vCPUs, VM 
memory, and netdevice channels per VM, with device pre-copy 
enabled/disabled. 



 

 

 

We further analyze the latency of key system-level opera-
tions that contribute to VM downtime using a VFIO virtio 
driver extension and QEMU profiling. Table 1 shows the la-
tency with device-level pre-copy disabled mode, while Ta-
ble 2 shows the latency with device-level pre-copy enabled 
mode. Both tables list the latency of each operation that con-
tributes more than 1 millisecond of latency, ignoring smaller 
latency contributors. 

Our observations indicate that enabling device-level pre-
copy results in more pre-copy operations of the system 
RAM and device state. This leads to a 50% reduction in 
memory (RAM) copy time in the device pre-copy method in 
the micro-benchmark results, saving 100 milliseconds of 
downtime. 

Additionally, with pre-copy enabled, the driver receives 
hints through pre-copy information via ioctl(). This allows 
the driver to read the device state and cache it as soon as the 
device state reaches the PRE_COPY state. However, read-
ing the device state asynchronously would further help to 
reduces the 8msec latency to near zero. This is because such 
latency bound commands can easily overlap with RAM mi-
gration phase utilizing the asynchronous queuing interface. 
Consequently, the final state reading time is reduced to a 
negligible 0.012 microseconds due to the caching in the 
driver, representing an improvement of 16,666 times on the 
source hypervisor compared to a pre-copy method. How-
ever, this latency reduction is not proportionately reflected 
in the VM downtime due to high latency exists in device 
memory copy. 

Location Operation Latency 
(msec) 

Source 
hypervisor 

Device state change from 
RUNNING to 
RUNNING_P2P 

7 

Device state change to STOP 0.6 
Save (read) the system RAM 230 
Save (read) the device state 
(per device) 

20 

Destination 
hypervisor 

Load (write) the system RAM 226 
Load (write) the device state 
(per device) 

300 

Device state change to STOP 
to RUNNING_P2P 

1.1 

Device state change from 
RUNNING_P2P to 
RUNNING 

2 

Table 1. VM downtime breakdown when the device pre-
copy disabled. 
 

Location Operation Latency 
(msec) 

Source 
hypervisor 

Device state change from 
RUNNING to 

7 

PRE_COPY_P2P 
Device state change to 
STOP_COPY 

8 

Save (read) the system RAM 135 
Save (read) the device state 
(per device) 

0.012 

Destination 
hypervisor 

Load (write) the system RAM 131 
Load (write) the device state 
(per device) 

11 

Device state change to STOP 
to RUNNING_P2P 

1.1 

Device state change from 
RUNNING_P2P to 
RUNNING 

2 

Table 2. VM downtime breakdown when the device pre-
copy enabled. 
 
We observed that device handling commands are performed 
serially by the user space migration module in synchronous 
system call read() and write() even though the device state 
of multiple devices are unrelated to each other. Hardware 
devices are inherently parallel in nature to support multiple 
outstanding commands per administration queue. The 
synchronous user space was unable to utilize the hardware 
parallelism for such use case. Though we believe that 
io_submit() system call usage using aio_read() and 
aio_write() system call extension for the VFIO subsystem 
can further improve by queuing these operations to the 
device. Such extension would not be possible using ioctl() 
UAPI which are designed mainly for synchronous 
operations from the user space. 

7. Lessons learnt and next steps 
1. Device parts exchanged during pre-copy and stop 

copy phase of the VFIO state machine are nearly 
same. This effectively performs de-duplication of the 
state on the destination device when setting the 
device state. This simplified the device migration 
design. We also considered an alternative where such 
a deduplication is done on the source device. Such 
method can be useful if the device state becomes very 
large and often changing. In all known cloud 
operators known workload of near term and with 
upcoming virtio net features enhancements, the de-
duplication approach on the destination device seems 
to fit the downtime requirements even at moderate 
scale of 4 to 8 devices per VM. 

2. A generic administration command and queue 
interface was originated from the migration interface 
need; however, it became useful beyond it. We were 
able to accelerate even virtio legacy 0.9.5 workload 
VMs too and it also overcome the limitation of the 
PCIe SR-IOV which never supported IO-BAR but 
were part of the virtio specification. Community 
finds administration interface even further useful to 
implement flow filters functionality [6]. 



 

 

3. CPU IOMMU dirty page tracking is only available 
on the latest CPUs even though the CPU 
specifications have it listed it for some time. Cloud 
operator’s workload runs on few CPU generations, 
where all CPU family may not support dirty page 
tracking. Hence, virtio specification incorporating 
and optionally supporting device side dirty page 
tracking functionality can be useful though not a 
must. 

4. We began to develop specification and 
implementation in tandem that resulted in measuring 
trade-offs between various approaches more 
effectively, such as deduplication of device parts on 
destination device vs source device. 

5. The latest and revised draft specification for this 
design is posted at [21] for the community and 
technical committee review. Our design has been 
developed and validated for various sizes of the VMs 
and multiple devices per VM as listed in the 
performance tests. After community acceptance of 
the virtio specification, we would like to open source 
the device migration driver extension to be included 
in the upstream Linux kernel under GPL license as 
part of the existing virtio VFIO driver [19]. 

8. Conclusion 
1. Our design is first of its kind for the virtio PCI 

hardware devices. It is easily extendible to multiple 
types of virtio devices with just new definitions of the 
device parts like Linux netlink messages [20]. 

2. A device pre-copy approach achieves 340% 
reduction in the VM downtime for a single device, 

and 494% reduction in downtime for multiple 
devices with large number of netdevice channels. 
This high performance is achieved at nearly no 
additional memory burden from the device. 

3. IOMMU based dirty page tracking enablement has 
no effect on the VM migration time or VM 
downtime. Instead, it simplified the device migration 
design without using PCI PRI, PASID, and without 
any vendor or device specific software-based queue 
tracking approach. 

4. Our design does not require any support of complex 
PCI PRI interface for dirty page tracking as imagined 
in slide_46 of [13]. 

5. Modern purpose built DPUs [14], [15] and [16] used 
in accelerating cloud workload are equipped with 
memory of 64GB, 16GB and 16GB respectively, 
which can dynamically store the required device 
parts either on the source or destination device during 
the pre-copy phase of device migration. Virtio 
specification abstracting it using a resource object is 
a good start, which may require more granular 
approach in future the specification and eco-system 
matures. 
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