
Asymmetric Network 
Processing to Reduce Jitter

Satish Kumar
satish.kumar@bytedance.com

ByteDance
System Technology Engineering (STE)

1



Agenda..

• Commonly used event loop designs.
• Preferred network configuration.
• Analyze the Jitter introduced.
• A dynamic approach to handle the jitter.

2



App
Context

Sender
Stack

IRQ 
Contexts

Receiver
Stack

Linux Kernel Networking Stack

• Pipeline by design
• Runs inside two context:

1. IRQ Context (NIC IRQ + SoftIRQ)
▪ Receiver stack

2. Application Context
▪ Sender stack

RX TX

Socket Queue

3



Network Execution Models

• Kernel does the scheduling and provide concurrent safe environment.

DPDK Linux Kernel

Jitter in Execution

4



Scale-Out Configuration

• Ideally
o The receiver and sender stack should run on the same CPU

▪ For example, by using RFS/aRFS (Receiver Flow Steering)
o To have better cache relevance

• But that’s not the case, due to
o Application uses single thread receiver architecture

▪ Multiplex read IOs
o Depends upon

▪ Kernel threads for scalability

• Normally used is scale-out configuration
o By using NIC multi-queue (RSS: Receive Side Scaling)

5



Event Loop Architectures

• Redis and NetPoll RPC Framework
• One to Many relation between application receiver thread and kernel SoftIRQ threads.

6



Jitter in Scale-Out

• Kernel receiver stack runs on most CPUs
• Polluting caches

• Frequently interrupts the application execution:
• NIC IRQ
• SoftIRQ

• So if we think (and highlighted in multiple documents):
• There is no logical sharing between the receiver and application context.
• One process packet header, other consumes the payload.
• It make sense to separate the two context.

7



Asymmetric Network Processing (ANP)
Isolates receiver context from 
application context by:

1. Identifying CPUs to 
reserve for receiver stack.

2. Modify the flow 
hash indirection table in 
the NIC to divert all 
packet equally to 
the reserved CPUs.
▪ Ethtool –X 

<dev> equal <#reserved_cp
us>

3. Change application task 
affinity to remaining CPUs.

• TX queues needs to be 
mapped to

8



Analysis

• Ping pong client server benchmark
o Bm0: redis like architecture
o Bm1: netpoll like architecture

o The server modifies the data.
o Pfifo qdisc is in use.

• Value size 1KB
• Total CPUs 20
• CPUs reserved in ANP for bm0 and bm1 are 8 and 4 respectively.
• Numbers measured on server side, where each server creates four event loop 

of similar type.

9



Analysis continues..

• Throughput increase with number of connections.
o 2-18% increase

• Significant reduction in 99 and 99.9 percentile latencies.
o 10-50%

10



Analysis continues..

• Topdown analysis shows reduction of bottleneck on frontend as well as backend.
• Improves instruction retiring and provide better instruction per cycle
• Stalls on Frontend caches (TLB and L1 Instruction cache) reduce by ~30%.
• Slight increase in local core caches (L1 and L2) and decrease on shared cache (L3) signify cross core 

communication after the isolation.

11



Analysis continues..

• Sampling L2 miss
o Cross core communication 

on epoll event 
subsystem, socket queue and skb is 
expected.

o More investigation is needed to 
reduce data sharing.

o Same delta on _copy_to_iter confirm no 
logical sharing between kernel 
receiver and application context.

12



Redis and NetPoll Benchmark Results

• Throughput increase 4-22% and 5-8%
• Latency decrease 14-27% and 2-17%.
• Increase of -24% and -54% P999 latency with higher Redis server count is 

due to less available application concurrency after isolation.
13



ANP: When and How
• Reserving CPUs reduce concurrency available to the application.

o Not applicable under high concurrency requirements.
o For ex: Show high tail latency, reduced in throughput etc.

• Not all servers in Datacenter are highly loaded.

• Dynamically identify the reserved CPUs:
o 'si' CPU utilization.
o Application Feedback loop: average latency and throughput
o Kernel Feedback loop?

• Comment on CPU utilization:
o In most scenarios we found its reduced
o And in other it is proportional to the throughput increase
o But rarely we have seen that it consumes more.

• io_uring
o Netpoll like architecture can benefit from softirq integration with io_uring
o Three cpu jumps : irq -> epoll,recv -> business
o data copy to userspace inside softirq context

14



Conclusion

• Asymmetric processing provide better performance metrics:
o Efficiency in frontend caches
o Interference free execution

• Dynamic reservation of CPUs:
o Concurrency consideration from the application.
o A feedback loop is needed.

• Provides a good balance between throughtput, latency and cpu utilization.

• Work is needed:
o Reduce data sharing between the two contexts.
o Investigate other scenarios where qdisc queues are involved.

15



• More details on paper.

• Questions?

• Contact:
o satish.kumar@bytedance.com
o ByteDance, System Technology Engineering (STE)

16

mailto:satish.kumar@bytedance.com

	Slide 1: Asymmetric Network Processing to Reduce Jitter
	Slide 2: Agenda..
	Slide 3: Linux Kernel Networking Stack
	Slide 4: Network Execution Models
	Slide 5: Scale-Out Configuration
	Slide 6: Event Loop Architectures
	Slide 7: Jitter in Scale-Out
	Slide 8: Asymmetric Network Processing (ANP)
	Slide 9: Analysis
	Slide 10: Analysis continues..
	Slide 11: Analysis continues..
	Slide 12: Analysis continues..
	Slide 13: Redis and NetPoll Benchmark Results
	Slide 14: ANP: When and How
	Slide 15: Conclusion
	Slide 16

