
Asymmetric Processing to Reduce Network Jitter

1st Satish Kumar, 2nd Fam Zheng
ByteDance

London, United Kingdom
satish.kumar@bytedance.com, fam.zheng@bytedance.com

Abstract

A RPC request goes through a minimum of four stage network
pipeline on the remote server. The NIC DMAs the packet, the
kernel receiver stack directs the data to the socket, the appli-
cation context reads, process and sends the response back, and
finally NIC DMAs the data to the wire. The execution of the
first and final stage is performed by the NIC in isolation but
the other two stages runs in resource sharing environment and
constantly interfere the execution of each other. The design
is pipelined but the execution is not really pipelined. There is
no logical sharing of data between kernel receiver stack and
the application as first touches the header of the packet and
the later consumes the payload. In this paper, we analyse the
benefits of executing the kernel network receiver stack in iso-
lation from the application (sender) context. We benchmark
the new isolation execution model using the Redis server and
Netpoll RPC framework where throughput increase is 20% and
9% along with reduction in latency by 25% and 15% respec-
tively.

Keywords
Linux Kernel Network, Network Receiver Stack, Network
Sender Stack, Event Loops, RPC, SoftIRQ, IRQ, Run to
Completion, Pipeline, Redis, Netpoll

Introduction
Following the microservice architecture, the large applica-
tions inside the datacenter are broken down into smaller ser-
vices which communicate with each other using Remote Pro-
cedure Calls (RPC). The network traffic generated by service
communication (also known as east-west traffic) forms a sig-
nificant portion of datacenter networking and a server load.
As there might be thousands of active connections, these ser-
vices utilise the epoll event notification subsystem of Linux
to multiplex IO inside an event loop. Figure 1 shows the two
common variants of the event loop architecture adopted by
applications inside the datacenter.

IIn single thread architecture, the task of reading data from
socket, processing application logic and then sending out the
response is performed in the context of event loop itself. The
single thread is used in a non-blocking manner and the IOs are
scaled using kernel threads (SoftIRQ for networking). Also,
the complexity of multi-threaded concurrency and data order-
ing is pushed to the kernel threads, simplifying the applica-

Event LoopRead

Process

Send

Epoll Wait

SoftIRQ
Threads

Single Thread Architecture

Event Loop

Read Process & Send
User Threads

Epoll Wait

SoftIRQ
Threads

Multi Thread Architecture

Figure 1: Event loop based application architectures.

tion flow. This architecture is usually utilised by the applica-
tions which are IO bound, for example, Redis server. On the
other hand, the multi-threaded architecture is more applica-
ble to CPU bound applications as it creates additional threads
to scale application logic. The Netpoll RPC framework is
designed following the multi-thread architecture to support
application scalability.

Both architectures observe non-blocking single receiver
context in the userspace and depend upon kernel threads to
scale network IOs. So the systems are usually configured
in a scale-out manner by using multiple queues of the NIC,
i.e. RSS (Receive Side Scaling), to equally distribute re-
ceived packets across CPUs. Overall, there are two execu-
tion contexts, i.e. IRQ context (consist of NIC IRQ han-
dler and SoftIRQ) and application context. Given the scale
out configuration, both the context runs simultaneously on
most CPUs, which can be best matched with the Schedulable
Pipeline Model from Figure 2.

The Run to Completion model is preferred by simpler net-
working applications with real time requirements, for ex, L2
and L3 forwarding. The pipeline model or sometimes re-
ferred to as graphs provide dedicated resources to every stage
of the pipeline, is preferred by more complex applications
like deep packet inspection etc. The Linux kernel network
stack, runs on the shared CPU resources, is pipeline by de-
sign and used by applications for network communication.
The pipeline stages are scheduled by the kernel in a concur-
rent safe implementation. We have referred to this execution
model as Schedulable Pipeline.

The jitter, which we define as additional work done by



core 1

Run To Completion

Q Q

core 1 core 2

P1 P2 P3

core 3

Pipeline

Q

core 1

Schedulable Pipeline

RX TX

RX TX

P1

P2

P3

RX

TX

Q

Figure 2: Different network execution models.

the hardware or software apart from processing the request,
is minimum on Run To Completion model, intermediate
on Pipeline model, and maximum on Schedulable Pipeline
model. The reason is quite evident as jitter increases with
more complexity.

In this paper, we put forward a new Asymmetric Network
Processing (ANP) execution model for Linux kernel where
the receiver stack is isolated from the application context to
find a better balance between two pipelined models shown
above. We analyse our model using the ping pong micro-
benchmarks, and present results for Redis and Netpoll RPC
benchmarks. In the end, we suggest when and how this model
can be applied and additional changes in the kernel to further
enhance the benefits of the ANP model.

Asymmetric Network Processing (ANP) Model
The Linux kernel receiver stack is responsible for process-
ing the packet header and gets executed inside the NIC IRQ
and SoftIRQ context. At the end of each execution, the IO
is inserted into the respective socket queue for the applica-
tion to consume the data/payload in its own context. There
is no logical sharing of data as first operates on the header
and later only touches the payload, so it makes sense to sepa-
rate the receiver stack from the rest of the execution to allow
interference free execution of independent logic. Figure 3
presents the Asymmetric Network Processing (ANP) model
which isolates the kernel receiver stack to a reserved set of
CPUs.

Identifying the number of CPUs needed by the receiver
stack is dependent on the workload and can be done dynami-
cally based on policies. In the conclusion and future section,
we will talk more about things to consider to define these poli-
cies. Once the CPUs are identified to run the receiver stack, it
needs to be made sure that single RX and TX pair is assigned
to each of them, which can be done by changing the NIC
IRQ affinity from procfs. After that, the NIC’s receive flow
hash indirection table can be modified to redirect all packets
equally among the NIC queues which are mapped to the re-
served set of CPUs. The ethtool provides the option to modify
the hash table. For example, the command ”ethttool -X ¡dev¿
equal 4”, will configure NIC to redirect all packets to the first
4 RX queues equally. Finally, to create the complete isola-
tion of the receiver stack, task affinity of the user application
needs to be changed to the remaining set of CPUs.

RX TX RX TX RX TX NICTX TX TX

Q Q Q

Packet Header Processing

SoftIRQ

Event Loop Event Loop

User Threads

Payload Consumption

core 1

SoftIRQSoftIRQ

core 2 core 3 core 4..n

Socket / IOUring Queues

TX TX TX

Notification

Figure 3: Asymmetric Network Processing (ANP) Model.

The epoll notification subsystem, socket queues and the IO
descriptor (skb) should be the only shared data between the
receiver stack and the application. The send usually happens
in the application context and will be confined to the applica-
tion CPUs where TX queues are mapped. Point to note that
the RX queues are also mapped to the CPUs used by the ap-
plication (not shown in the figure for simplicity), but they will
not generate any traffic due to hash table redirection modifi-
cation. The TX queues on the reserved CPUs will be used for
IP layer communication.

The ANP model thus achieves the full separation of send
and receive flow and isolates the receive IRQ contexts from
the application context.

Analysis
Except epoll, socket queue and its descriptors, we look for
complete isolation of kernel receiver stack with the applica-
tion context. In this section, we will analyze the behaviour of
Linux networking stack with the ANP model.

A ping-pong client-server workload is used for the analy-
sis. The performance numbers and perf events are measured
on the server side. There are two different implementations
of server, i.e. bm0 and bm1, representing single thread and
mult-thread event loop architecture shown in Figure 1 respec-
tively. The server is configured to run four event loops of the
same type where connections are equally distributed.

Total number of CPUs allocated for the experiment are 20,
each belong to a separate core and part of the socket where
NIC is attached. The ANP model (asymmetric) is compared
with the configuration where all 20CPUs are shared by the
kernel receiver stack and application alike (symmetric). As
the ANP model require certain number of CPUs to be re-
served for the receiver stack, in this experiment, 8 CPUs are
reserved for bm0 and 4 CPUs in the case of bm1 server. The
remaining CPUs are used to run the application context, so in
the case of bm0 it’s a 12-8 split and for bm1 it’s a 16-4 split.
More reserved CPUs are provided to the single thread archi-
tecture server, i.e. bm0, as it consumes higher requests per
second than its counterpart bm1, which creates user threads
for processing.

The payload size of 1KB is used in all the experiments.
The client and server runs on different Intel Xeon machines



1000

1500

2000

2500

3000

100 200 300 400 500 600 700

-7%

7.9%
5.8%

12.7% 13.8%
2.5%

8.5%

10.1%
15.3% 18.1%

T
hr

ou
gh

pu
t(

K
IO

PS
)

TCP Connections

bm0-symm
bm0-asymm
bm1-symm

bm1-asymm

Figure 4: Throughput vs Number of Connections.

0
100
200
300
400
500
600
700
800

100 200 300 500 700

0
200
400
600
800
1000

100 200 300 500 700

L
at

en
cy

(u
s)

P99 Latency

bm0-symm
bm0-asymm

bm1-sym
bm1-asymm

8% 9% 9%
8% 17%

-3% 11% 10%
17%

21%

L
at

en
cy

(u
s)

P999 Latency

13% 20% 9%
14% 23%

6% 11% 12%
20%

52%

Figure 5: Latency vs Number of Connections.

with 25gbps NIC connected to each other via TOR switch.
The kernel version used is v6.7.

Graphs in Figure 4 and 5 provide throughput and latency
comparisons of the ping-pong benchmarks. The number of
connections varies on the X-axis. Comparing the two models,
the performance characteristics achieved by the ANP model
becomes more significant with higher number of connections.
Higher connections generate high network load, thus increas-
ing the jitter in the system that ANP model is able to reduce.
For bm0 and bm1 servers, the throughput achieved is 2-18%
greater, and the 99 and 99.9 percentile latencies are reduced
by 6-50%.

The Topdown analysis from perf was used to understand
the results and differences. Table 1 pesents the TopdownL1
metrics in different experiments. To make sure that the metric
numbers are comparable, the benchmarking was performed
by generating a fixed number of IOs. As the amount of work
generated is constant, the number of instructions executed is
fairly the same (0.02% and 4% less for ANP). The Topdown
metrics suggest that the ANP model reduces the overall bot-
tleneck on frontend as well as on the backend, which is lead-
ing to better retiring instructions and IPC (instructions per
cycle) numbers.

Further analysis of backend and frontend perf events re-
veals a pattern. Table 2 shows the percentage difference
between two models, where a negative value means ANP

bm0-symm bm0-asymm bm1-symm bm1-asymm
instructions 3972234172663 3971267766582 5376436857531 5140460280980
inst per cycle 1.25 1.32 1.08 1.14
tma backend bound 47.8 46.2 50.1 50
tma bad speculation 2.5 2.6 4.4 4.3
tma frontend bound 23.2 23.3 22.6 21.7
tma retiring 26.4 27.9 22.9 24.1

Table 1: TopdownL1 metrics.

bm0 bm1
MEM INST RETIRED.ANY 0.3% 4.7%
CYCLE ACTIVITY.STALLS MEM ANY 2.8% 7.9%
EXE ACTIVITY.BOUND ON STORES 15.4% 36.1%
CYCLE ACTIVITY.STALLS L1D MISS -5.6% 5%
CYCLE ACTIVITY.STALLS L2 MISS -5.3% 5%
CYCLE ACTIVITY.STALLS L3 MISS 94.6% 91.1%
ICACHE TAG.STALLS 33.3% 24.7%
ICACHE DATA.STALLS 14.8% 29.8%

Table 2: Cache hierarchy perf miss events.

model had higher value for that particular counter. The re-
tired memory instructions are fairly the same. The L1 and
L2 caches are local to the core and L3 is shared. Apart from
L1D and L2 cache, all the other caches stalls are reduced in-
side ANP model. Specifically, the frontend caches, which
consist of TLB (ICACHE TAG) and L1 instruction cache
(ICACHE DATA), where the stalls are significantly reduced,
its mainly because caches are more aligned and friendly to the
type of load running on that CPU after isolation. For bm0, the
slight increase in L1D and L2 stalls, and decrease in L3 stalls
signify an increase in cross core communication. This is ex-
pected as ANP will have slightly more cross core communi-
cation after the separation. For bm1, which creates additional
user threads, cross core communication is hidden by a better
hit ratio of application threads.

To better understand the data sharing pattern, the L2 stalls
are sampled to pin point the code paths. Table 3 shows the list
of functions where large amount of stalls ocurred, and as be-
fore, the negative value means a higher value for ANP model.
The function copy to iter, copies the data to the userspace
and its close to zero delta confirms that there is no logical
sharing of data between kernel receiver and application con-
text. Functions like sock poll, tcp poll, do epoll wait and
raw read lock irqsave are all part of the epoll notification

system where cross core communication is expected. The
tcp queue rcv function inserts the entry into the socket queue.
However, further investigation is needed on other code paths
and the sharing of skb data structure.

In general, the analysis shows that the efficiency of caches
is one of the main reason behind better performance of the
ANP model. The other obvious reason being the interference
free execution of independent contexts to reduce resource
contention. It should be noted that the analysis presented in
this section is not complete as there are various other scenar-
ios where new data flows may be revealed. For example, in
our experiments, pfifo queuing discipline is used but the flow
may change with a rate limiting traffic control algorithm.



bm0
tcp ack -53.1%
copy to iter 1.5%

sock poll -23.8%
skb release data -42.1%
tcp recvmsg locked -12.1%

check object size -1.9%
tcp queue rcv -72.7%
tcp poll -29.3%
tcp check space -77.2%
skb attempt defer free 9.4%
raw read lock irqsave -103.7%

tcp rcv established -65.1%
list del entry valid or report -5.6%
inet lookup established -120.4%

do epoll wait -97.6%
napi pp put page -58.6%

lock text start -72.2%
native queued spin lock slowpath -569.9%

Table 3: CYCLE ACTIVITY.STALLS L2 MISS event sam-
pling.

Results
In this section, the results of Redis server and Netpoll RPC
framework with the ANP model are presented. The experi-
mental setup remains the same as the previous section, and
the same terminologies are followed.

Commonly used Memtier benchmark is used to generate
load on the Redis cluster. The benchmark is configured to
create 240 connections over 30 client threads which gener-
ates a random value size workload (capped at 1KB) in the 2:1
ratio of get and set commands. The same memtier configu-
ration is used in all the cases and the number of servers in
the Redis cluster are increased along with the total available
CPUs. Following configurations are benchmarked, in which,
the number of redis servers are 4, 8, 12, 16 and 20, and the
total CPUs allocated are 12, 20, 28, 32 and 32 respectively.
In the case of ANP, the number of reserved CPUs used for the
receiver stack, following the same order as the previous line,
are 4, 8, 8, 8 and 8, thus creating a split of 8-4, 12-8, 20-8,
26-8 and 26-8 respectively.

Netpoll is written in Golang and by default it creates one
event loop per 20 go processes. In our experiments, the avail-
able CPUs are fixed to 16, so Netpoll only creates one event
loop thread context. A total of four CPUs are reserved for the
ANP model, creating a 12-4 split.

Figure 6 shows the throughput graphs for Redis-Memtier
and Netpoll benchmarks. The ANP model provides better
throughput in all the cases of Redis and Netpoll, ranging be-
tween 4-22% and 5-8% respectively. Figure 7 presents the 99
and 99.9 percentile latency graphs. The P99 latency in Redis

500
1000
1500
2000
2500
3000

4 6 8 10 12 14 16 18 20

4.24%

20.07%
14.96%

22.25%
11%

450
500
550
600
650
700

100 200 300 400 500 600 700

7.64%
8.18% 7.76% 6.51% 5%

K
IO

PS

Redis Servers

Redis Memtier Benchmark

symmetric
asymmetric

K
IO

PS

TCP Connections

Netpoll RPC Benchmark

symmetric
asymmetric

Figure 6: Throughput comparison of Redis and Netpoll.

0
0.2
0.4
0.6
0.8
1

1.2

4 8 12 16 20
0
1
2
3
4
5

4 8 12 16 20

0
0.5
1

1.5
2

2.5
3

100 200 300 500 700
0
1
2
3
4
5

100 200 300 500 700

us

Redis Servers

P99 Latency Redis Memtier Benchmark

21% 19% 19% 24% 27%

us

Redis Servers

P999 Latency Redis Memtier Benchmark

19% 14% 17%
-24%

-54%

us

TCP Connections

P99 Latency Netpoll RPC Bencmark

9% 14% 17%
11%

6%

us

TCP Connections

P999 Latency Netpoll RPC Benchmark

symmetric
asymmetric

9% 12% 15%
9%

2%

Figure 7: Latency comparison of Redis and Netpoll.

is reduced significantly by 19-20% in all the cases but when
the number of Redis servers is increased to 16 and 20, there
is an increase of P999 latency by -24% and -50%. The less
available concurrency for redis servers in these two scenarios,
after ANP model separation, is the reason for high tail latency.
We will talk more in the next section about when it’s best to
use ANP model. For Netpoll, the P99 and P99 latencies are
reduced in all cases by 6-17% and 2-15% respectively.

Conclusion
In this paper, we put forward the new ANP model which pro-
vides promising results of removing jitter in the shared sys-
tem. The analysis showed that a better cache efficiency was
achieved and, importantly, the ANP model achieves an in-
terference free execution environment for RX and TX flows.
The cross core communication after isolation was identified
to be not significant in the Linux kernel.

The ANP model cannot be applied in all scenarios and
points below are some considerations:

• ANP model reduces the concurrency of the application, so
on a highly loaded system it may have side effects specific
to the application. For example, Redis server showed high
tail latency when number of servers increased.

• The model makes sense when there is a one-to-many re-
lationship between application receiver and kernel softirq



threads. If the application follows a blocking design which
creates a thread per connection, then RFS (Receiver Flow
Steering) and other strategies may prove better.

Future work on Linux kernel:

• As stated before, the analysis is not yet complete and re-
quires more experimentation with other common configu-
rations.

• More investigation on data sharing blocks is needed so that
any unnecessary cross core communication can be avoided.

• On the last note, the integration of io uring with SoftIRQ
context can provide significant advantages to Netpoll like
architecture. As in these applications, the thread which
reads the data and the context which consumes the data
is separate. SoftIRQ copying the data directly to the
userspace buffer will remove overhead from the applica-
tion event loop.

References
[1] Netpoll CloudWeGo Github

https://github.com/cloudwego/netpoll.
[3] Redis In Memory Database

https://github.com/redis/redis.
[3] Memtier: Redis Open Source Benchmark

https://github.com/RedisLabs/memtier benchmark.
[4] Hesam Zolfaghari; Haseeb Mustafa; Jari Nurmi Run-

to-Completion versus Pipelined: The Case of 100 Gbps
Packet Parsing 2021 IEEE 22nd International Conference
on High Performance Switching and Routing (HPSR).
https://ieeexplore.ieee.org/document/9481797.

[5] Elder Vicente; Rivalino Matias Jr. Exploratory
Study on the Linux OS Jitter 2012 Brazilian
Symposium on Computing System Engineering
https://ieeexplore.ieee.org/document/9481797.


