

Scheduling HTTP streams

Evgeny Mekhanik, Alexander Krizhanovsky, Konstantin Tatar

Tempesta Technologies, Inc.

{em,ak,kt}@tempesta-tech.com

HTTP streams
https://www.webpagetest.org/

One TCP connection (HTTP/2)

Shared by tens HTTP streams
CSS stream depends on an
HTML stream

CSS stream has higher priority
than a JPG stream

https://www.webpagetest.org/

HTTP streams prioritization in late ‘23
Well studied

● “Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC”, R.Marx et all, 2019
● “Resource Multiplexing and Prioritization in HTTP/2 over TCP versus HTTP/3 over QUIC”,

R.Marx et al, 2020

RFC 7540 is supported by all major web clients and servers
RFC 9218 (June ‘22) is also supported by all web clients and servers
All HTTP/3 – RFC 9218
All HTTP/2 – RFC 7540

HTTP streams trees

RFC 7540: dependency tree
● control (dummy) stream 0 is the root
Priority queue on the same tree level
● streams have [1, 256] weight or

[1, 7] urgency
● reprioritization – dependency and

weight recomputation & reinsertion
● idle (new) streams are in the tree,

but can be removed at once
● out-of-priority: upstream responses

may arrive on their own order

Reprioritization
PRIORITY frame

Weight change
Dependency tree can be
reconstructed on any state
● browsers change priorities of

streams
Sharing bandwidth:
● RFC 7540: exclusive streams
● RFC 9218: and incremental flag

Stream A is made dependent on
stream D

 x x x

 | | |

 A D D

 / \ / \ |

 B C ==> F A OR A

 / \ / \ /|\

 D E B C B C F

 | | |

 F E E

 (non-exclusive) (exclusive)

Firefox 125: RFC 7540 - dependency tree
Create new stream id 3, weight 0, excl 0, depends on 0

Change stream 3 dependency: prev depends on 0, now depends on 0, new weight 201, excl 0

Create new stream id 5, weight 0, excl 0, depends on 0

Change stream 3 dependency: prev depends on 0, now depends on 0, new weight 101, excl 0

Create new stream id 7, weight 0, excl 0, depends on 0

Change stream 7 dependency: prev depends on 0, now depends on 0, new weight 1, excl 0

Create new stream id 9, weight 0, excl 0, depends on 0

Change stream 9 dependency: prev depends on 0, now depends on 7, new weight 1, excl 0

Create new stream id 11, weight 0, excl 0, depends on 0

Change stream 11 dependency: prev depends on 0, now depends on 3, new weight 1, excl 0

Create new stream id 13, weight 0, excl 0, depends on 0

Change stream 13 dependency: prev depends on 0, now depends on 0, new weight 241, excl 0

What priority actually means?

All the streams are exclusive
Yes, even siblings with the same parent
● RFC contradiction
● seems webpagetest.org bug
● a new exclusive dependent stream

evicts previous exclusive dependent one
Weights don’t mean anything, except
● progressive JPEG
● Firefox
● nghttp2/h2load & web API(?)

Progressive JPEG

The popular many-images resources use non-progressive JPG or WEBP

 Facebook images.google.com youtube.com ebay.com

Firefox streams prioritization
Doesn’t use EXCLUSIVE flag (vs Chrome, Safari, Edge)

Not so much better than fair round-robin

Firefox dependency tree building

Create idle streams as a nodes in
dependency tree
● to avoid race on adding a new

stream and its parent deletion
● unique for Firefox
● idle forever
Use weights to specify streams
priority
Sends more reprioritization frames
than in Chrome

Streams 3, 5, 7, 13 are idle.

RFC 7540 5.3 vs RFC 9218
7540 is outdated and replaced with 9218
● too sophisticated streams management in 7540
● nowadays 7540 is only supported for HTTP/2
9218 is used only for HTTP/3
● (ordering) urgency [0,7] – responses precedence (like weight)
● (bandwidth sharing) incremental [0, 1] (like not exclusive)
● urgency reprioritization, but not dependency tree
● 10.1 prohibits sending low-urgency early received responses

Many existing implementations with GPLv2, MIT or BSD licenses...

RFC 7540: Nginx
Not a full RFC support:
● sends frames on dependent streams (ranks comparison)
● unfair bandwidth sharing between streams on the same level

void ngx_http_v2_queue_frame(ngx_http_v2_connection_t *h2c, ngx_http_v2_out_frame_t *frame) {
 ngx_http_v2_out_frame_t **out;
 for (out = &h2c->last_out; *out; out = &(*out)->next) {
 if ((*out)->blocked || (*out)->stream == NULL)
 break;

 if ((*out)->stream->node->rank < frame->stream->node->rank
 || ((*out)->stream->node->rank == frame->stream->node->rank
 && (*out)->stream->node->rel_weight >= frame->stream->node->rel_weight))
 break;
 }
 // . . .

RFC 7540: H2O
Fast O(1) scheduler
● DRR-like deficit

computation
● 64 deficit groups (anchors)
● frames granularity
high memory consumption
(1056B for each stream)
Sharing bandwidth between
streams on the same level is
not fair (in theory)

2 streams sent the same amounts
34 streams sent 1 less frames (3% inaccuracy)
116 streams sent 2 less frames (4% inaccuracy)
52 streams sent 3 less frames (7% inaccuracy)
10 streams sent 4 less frames (17% inaccuracy)
3 streams sent 5 less frames (100% inaccuracy)
4 streams sent 6 less frames (69% inaccuracy)
3 streams sent 7 less frames (100% inaccuracy)
6 streams sent 8 less frames (83% inaccuracy)
5 streams sent 9 less frames (94% inaccuracy)
5 streams sent 10 less frames (76% inaccuracy)
11 streams sent 11 less frames (82% inaccuracy)
5 streams sent 12 less frames (81% inaccuracy)

struct st_h2o_http2_scheduler_queue_t {
 uint64_t bits;
 size_t offset;
 h2o_linklist_t anchors[64];
 h2o_linklist_t anchor257;
};

RFC 7540: nghttp2 (Envoy, Apache HTTPD etc)

Fair WFQ and good RFC support
log(N) scheduler on binary heap
● non-intrusive
● many memory allocations
● copies

static void
bubble_up(nghttp2_pq *pq, size_t index) {
 while (index != 0) {
 parent = (index - 1) / 2;
 if (!pq->less(pq->q[index], pq->q[parent]))
 return;
 swap(pq, parent, index);
 index = parent;
 }
}

int
nghttp2_pq_push(nghttp2_pq *pq,
 nghttp2_pq_entry *item) {
 if (pq->capacity <= pq->length) {
 n = nghttp2_max_size(4, pq->capacity * 2);
 nq = nghttp2_mem_realloc(pq->mem, pq->q,
 n * sizeof(...));
 ...
 }
 ...
 bubble_up(pq, pq->length - 1);
 return 0;
}

Data structures for WFQ

Dependency tree
● number of streams is usually <100
● the most frequent operation: reinsert a minimum key

 struct tfw_stream_sched_entry_t {
 . . .
 struct tfw_stream_sched_entry_t *parent;
 struct eb_root active;
 struct eb_root blocked;
 }

Weighted queue
● ellastic binary tree is for the weighted queue
● binary and Fibonacci heaps
● insertion-sorted array (H2O)

Ellastic binary tree
http://wtarreau.blogspot.com/2011/12/elastic-binary-trees-ebtree.html

Unbalanced binary radix tree - good on small data
All nodes keep data (good cache locality)
Used in HAProxy also for scheduling

Microbenchmark for streams data structures
Fibonacci heap – insert O(1), delete O(log(n)), but bad performance

Insertion-sorted array – the fastest, but memory greedy
Binary heap – worse than ebtree even w/o account memory reallocations
Linked lists – bad theoretical complexity.
https://github.com/tempesta-tech/blog/tree/master/h2_stream_wfq

 Benchmark 100 elem Time CPU Iterations

 BM_ebtree_insert_delete 22.6 ns 22.6 ns 31330583

 BM_fheap_insert_delete 147 ns 147 ns 4791582

 BM_heap_insert_delete 30.0 ns 30.0 ns 25555202

 BM_h2o_insert_delete 11.7 ns 11.7 ns 59135484

https://github.com/tempesta-tech/blog/tree/master/h2_stream_wfq

Naive weighted fair queuing
From https://www.mew.org/~kazu/material/2015-http2-priority2.pdf :
3 streams:
● A for weight 10
● B for weight 5
● C for weight 1
Queuing:
● A(10), A(9), A(8), A(7), A(6), A(5), B(5), A(4), B(4), ...

https://www.mew.org/~kazu/material/2015-http2-priority2.pdf

WFQ using Deficit Round Robin
https://en.wikipedia.org/wiki/Deficit_round_robin
https://www.mew.org/~kazu/material/2015-http2-priority2.pdf

Used by H2O (inverted and aproximated, frame granularity)
nghttp2
● penalty (like log in EEVDF) = last_send * 256 + pending
● cycle (min is next) += penalty / weight
● pending = penalty % weight

A for weight 10, cycle = pending = penalty = 0
B for weight 5, cycle = pending = penalty = 0

A sends 100: penalty = 25600, cycle = 2560, pending = 0
B sends 100: penalty = 25600, cycle = 5120, pending = 0 : A=400 B=200
A sends 150: penalty = 38400, cycle = 6400, pending = 0
B sends 100: penalty = 25600, cycle = 10240, pending = 0
A sends 100: penalty = 25600, cycle = 8960, pending = 0
A sends 50: penalty = 12800, cycle = 10240, pending = 0

https://en.wikipedia.org/wiki/Deficit_round_robin

...modern RFC 9218 support for HTTP/2
SETTINGS_NO_RFC7540_PRIORITIES

Firefox since 128 (July 9, ‘24)
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/128

Chrome since 124 (April 16, ‘24)
https://developer.chrome.com/release-notes/124

nghttp2 supports SETTINGS_NO_RFC7540_PRIORITIES and RFC9218
for HTTP2

H2O doesn’t support SETTINGS_NO_RFC7540_PRIORITIES,
RFC9218 is only for HTTP3
Nginx doesn’t support SETTINGS_NO_RFC7540_PRIORITIES,
seems doesn’t support RFC9218 at all

https://developer.chrome.com/release-notes/124

Firefox 128: RFC 9218 – no dependency tree
No changing priorities
Sends SETTINGS_NO_RFC7540_PRIORITIES: ignore weights and
dependency
● Firefox 126 & 127 don’t send the setting, but work same as Firefox 128

if server sends it
Sends priority header in request (9218 prioritization hint)

Create new stream id 3, weight 43, excl 0, depends on 0, u=0, i
Create new stream id 5, weight 22, excl 0, depends on 0, u=0, i
Create new stream id 7, weight 22, excl 0, depends on 0, u=0, i
Create new stream id 9, weight 22, excl 0, depends on 0, u=0, i

Tempesta FW HTTP streams scheduling
(in-progress)

O(log(N)) DRR scheduler

Good memory locality
● intrusive ebtree nodes in streams
● streams are preallocated on the same pages
ebtree on each dependency layer
● if single node, then no deficit recomputations
Use weights to order responses (like RFC 9218)
● Tempesta FW uses weight as urgency (by configuration option)
● Cloudflare splits resources in groups

https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

Scheduling HTTP frames to TLS & TCP
We have access to TCP
Do not send too small TLS records
for large HTTP frames

Security
Dependency Cycle Attack (CVE-2015-8659): attacker builds the dep tree
with cycles which leads to infinite computation of the tree
● seems only for non-RFC-compliant implementations
CVE-2019-9511: many PRIORITY frames leading to the dep tree
reconstruction
● max_concurrent_streams configuration option limits the size of the

dep tree (including idle streams)
● rate-limiting for PING, PRIORITY and SETTINGS frames

In general, a flood is possible for any control frame
e.g. PING flood, PRIOIRTY flood etc.

Thanks!

● https://tempesta-tech.com/knowledge-base/HTTP2-streams-prioritization/
● https://github.com/tempesta-tech/tempesta

em@tempesta-tech.com ak@tempesta-tech.com kt@tempesta-tech.com

https://tempesta-tech.com/knowledge-base/HTTP2-streams-prioritization/
https://github.com/tempesta-tech/tempesta
mailto:em@tempesta-tech.com
mailto:ak@tempesta-tech.com
mailto:kt@tempesta-tech.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

