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The machine learning storm

ChatGPT: fastest growing online application ever

2https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app

Just one month: 
• 600 million live inference queries
• 100 million unique visitors (Instagram took 2 years)

• Disruption and innovation in search, content creation, code/SQL generation, 
DevOps assistance, tutoring, translation, …

Massive implications for systems and networks

https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app


Two important metrics for ML systems

3https://towardsdatascience.com/chatgpts-electricity-consumption-7873483feac4

• Latency:
• Training ChatGPT took ~2 million GPU hours (200 years with one GPU)
• Live inference query response time should be less than 100 ms

• Energy consumption:
• ChatGPT’s monthly electricity consumption is in the millions of KWh
• Energy of serving inference queries for a month is larger than training

https://towardsdatascience.com/chatgpts-electricity-consumption-7873483feac4


We need

4

fast and energy-efficient ML systems.



State-of-the-art: application-agnostic datacenters

5

• Congestion control protocols
• Scheduling algorithms
• Network topology
• End-host capabilities

Implication: existing datacenter networks are becoming 
bottlenecks for ML training and inference jobs.
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High-level message of the talk

Networking techniques to build high-performance 
ML-centric datacenters.
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Talk outline: three key lessons

Collaborators: 

Congestion

7

Analog computing for ML inference [SIGCOMM’23, Science’22, OFC’22].

Fair congestion control is sometimes inefficient [HotNets’22, NSDI’24].

Reconfigurable networks for ML training [SIGCOMM’21, NSDI’23].



Network congestion in ML datacenters

• TCP or RDMA congestion control protocols.
• DNN schedulers place workers based on topological proximity.
• In large datacenters cross-job network contention is inevitable.

8Training Job1 Training Job2
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What is the impact of congestion control algorithms when ML 
jobs share network links?

Fair congestion control protocols are not necessarily 
beneficial for ML workloads!

9[HotNets’22] Congestion Control in Machine Learning Clusters, S. Rajasekaran, M. Ghobadi, G. Kumar, A. Akella



Communication pattern of DNN training
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DNN training has a periodic up-down pattern of network demand.
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Surprising payoff of unfairness
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Why does unfairness help ML training?
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Can unfairness interleave all DNN training jobs?
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Unfairness doesn’t always help

14

Job combination Speed-up from Unfairness Compatible

VGG11 (image recognition)
VGG11 (image recognition)

1.05x
0.86x ✗

DLRM (recommendation)
DLRM (recommendation)

1.3x
1.28x ✓

BERT (language)
VGG19 (image recognition)

1.17x
0.94x ✗

VGG19 (image recognition)
VGG16 (image recognition)

ResNet50 (image recognition)

1.18x
1.18x
1.01x

✓

Compatible jobs are a group of jobs for which unfairness results in 
faster iteration times for all the jobs in the group.



Which job are compatible? 

Network demand
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• Challenges: 
• Interleaving must be checked across thousands of iterations across many jobs
• Different jobs have different iteration times and communication durations

• Our solution: a geometric abstraction
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Determining job compatibility

• Fully compatible jobs: 
Two DLRM models

• Partially compatible: 
Two VGG11 models

Fully compatible

Partially compatible

Job1 : DLRM Job2 : DLRM

Job1 : VGG11 
Com

pute
Job2 : VGG11

Com
pute
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Challenge: 
Jobs with different iteration times sharing a link

Job2 on unified circle

Job1 on unified circle
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17• We translate the problem of compatibility to an optimization formulation to find rotation angles

Job2 : 60ms 
iteration time

Job1 : 40ms 
Iteration time

Solution: Use Least Common Multiple of 
iteration times to create unified circle

✓

30∘



Computing rotation angles 

Set of jobs and their compute/communication phases

Compatibility score and rotation angle for each job

Minimize the overlapping region on geometric circle

18



Translating rotation angles to time-shifts

19

Start time of the first iteration is shifted

[NSDI’24] Cassini: Network-Aware Job Scheduling in Machine Learning Clusters, S. Rajasekaran, M. Ghobadi, A. Akella
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Is there congestion control algorithm that can 
automatically stabilize to an interleaved state? 

20



MLTCP: A congestion control scheme for ML
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• MLTCP: A novel congestion control scheme for automatic interleaving of ML jobs

We are looking for partners from the Netdev community 
(Email: ghobadi@mit.edu)
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Talk outline: three key lessons
Congestion

22

Analog computing for ML inference [SIGCOMM’23, Science’22, OFC’22].

Fair congestion control is sometimes inefficient [HotNets’22, NSDI’24].

Reconfigurable networks for ML training [SIGCOMM’21, NSDI’23].



Can we avoid cross job congestion all together with a 
clean-slate ML-centric optical datacenter? 

23



Reconfiguring physical network topology

Topology A Topology A Topology A



Reconfiguring physical network topology

Topology A Topology B Topology C



DNNs training jobs exhibit different traffic patterns

(a) Vision (b) Image processing (c) Object Tracking (d) Speech Recognition
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Traffic pattern for a job is predictable but different 
jobs have different traffic patterns.
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ML training workloads and optical interconnects: 
match made in heaven

• Building full-bisection bandwidth networks is expensive and unnecessary
• Training traffic pattern repeats for the entire duration of a job (several hours to days)
• DNN training jobs have widely different traffic patterns

Key idea: a one-shot reconfigurable optical datacenter 
that partitions the network for each ML job. 

27
[SIGCOMM’21] SiP-ML: High-Bandwidth Optical Network Interconnects for Machine Learning Training
M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman, A. Vahdat, B. Klenk, E. Ebrahimi



d Optical Switches

A reconfigurable interconnect for DNN training

d interfaces
“Degree” Server1 Server2 Servern

Optical Switch1 Optical Switch2 Optical Switchd-1 Optical Switchd

Servern-1

n ports

28



DNN Parallelization Strategy
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Missing potential solutions!

Challenge: Huge search space
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Parallelization Strategy Search

Traffic Demand 
Extraction

Topology and 
routing

Parallelization 
strategy

TopologyFinder 
Algorithm

Topology Optimization

Strategy Optimization

TopoOpt: alternating optimization framework

[NSDI’23] TopoOpt: Optimizing the Network Topology for Distributed DNN Training, W. Wang, M. Khazraee, 
Z. Zhong, M. Ghobadi, Z. Jia, D. Mudigere, Y. Zhang, A. Kewitsch 30



Traffic Demand 
Extraction

TopologyFinder 
Algorithm

Topology Optimization

Alternating optimization framework

What is an ideal network topology for a given DNN training job?

31
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What is an ideal network topology for a given DNN 
training job?



Traffic heatmap of hybrid data/model parallelism
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AllReduce 



What is a good topology for a training job?
• Ideal solution: create a shard that exactly matches the traffic matrix
• Challenging:
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Option 1: build a topology tailored for large flows

• Assume each server has three NICs (degree = 3)
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Low Bandwidth!

Option 2: build a topology tailored for short flows

• Degree = 3
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Key idea: mutate the traffic matrix

AllReduce transfers are mutable. Model-parallel transfers are not mutable.
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Load-balance AllReduce traffic
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Theorem: our algorithm bounds the diameter of the 
topology to 𝑂(𝑑	𝑛!/#), where d is the degree of servers 38



Key technique: Regular permutations
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• n total accelerator, each with degree d

O(n!) permutationsRegular permutations

every server connects to another one with a fixed 
distance δ

Irregular permutations



Key technique: Regular permutations

• The possible set of 𝛿 are the positive integers less than 𝑛, such that 
gcd 𝛿, 𝑛 = 1

• Among all possible 𝛿 distances, choose a set of them within the degree 
to minimize the cluster diameter
• This technique works for other AllReduce algorithms as well
 

-> 𝑶 𝒏  search space!

• n total accelerator, each with degree d



Testbed and simulations
• Implemented in NCCL (code: http://topoopt.csail.mit.edu/)
• A 100 Gbps prototype with Nvidia A100 GPUs
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Testbed and simulations
• Implemented in NCCL (code: http://topoopt.csail.mit.edu/)
• A 100 Gbps prototype with Nvidia A100 GPUs
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Direct-connect topologies & Netdev community
• End-host networking stack is critical for routing, load-balancing, 

communication collective

43

d interfaces
“Degree” Server1 Server2 Servern
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Servern-1

n ports



Talk outline: three key lessons
Congestion

44

Analog compute for ML inference [SIGCOMM’23, Science’22, OFC’22].

Fair congestion control is sometimes inefficient [HotNets’22, NSDI’24].

Reconfigurable networks for ML training [SIGCOMM’21, NSDI’23].



What is photonic computation?

• Use light waves to perform computation in the analog domain
• Computers were born analog

45

Charles Babbage conceptualized 
computers in 1840s as analog devices

Optical AI accelerator
Farhat et al., Opt. Lett. 1985



Photonics can revolutionize computation

• Compute at 100 GHz 
• 40 atto Joules (10-18) per operation [Science’22]

46

But photonic computing has never gained practical traction!



Photonic multiplication: modulating light intensities 
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Challenge: optical devices are passive

ReLU
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• DNN DAGs involve a sequence of complex operations
• A control logic is needed to coordinate the operations across electronics and photonics
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Implication: Stop-and-go data movement between digital & photonics

49

ReLUFlatten
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Digital 
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• The control plane logic is deeply coupled with the data plane operations
• Slows down the critical data plane latency, increases energy consumption

Slow! Control plane logic

Data plane operations



The Achilles' heel of photonic computing systems
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Our solution: co-design photonics and digital systems together
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Control plane logic
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Key innovation: a programming abstraction for photonic computing systems

Lightning: A Reconfigurable Photonic-Electronic SmartNIC for Fast and Energy-Efficient Inference
Z. Zhong, M. Yang, J. Lang, C. Williams, L. Kronman, A. Sludds, H. Esfahanizadeh, D. Englund, M. Ghobadi, SIGCOMM 2023



The control abstraction: reconfigurable count-action
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Action

result < target

result == target

Count

module datapath_module {
 counts: {
  // variables to be counted
 }
 targets: {
  // a set of target results
 }
 actions: {
  // actions to be triggered
  // when the result is 
  // equivalent to the target
 }
};

variable

High-level idea: Trigger an action whenever the count result reaches the target.



Example: synchronized data streamer
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module synchronized_data_streamer {
 counts: {
  // count the sum of valid DAC flags
  sum DAC[i].valid (i = 1 to num_DACs) 
 }
 targets: {
  // trigger when the sum equals the number of DACs
  num_DACs
 }
 actions: {
  // stream DACs' data into photonic cores 
  stream DAC[i].data (i = 1 to num_DACs) 
 }
};
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Putting it all together: Lightning SmartNIC

100 Gbps 
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Plug-and-play kit for developers

Open-source  (https://lightning.mit.edu/) 

55

https://lightning.mit.edu/


World’s highest-frequency (4GHz) photonic ML inference
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Video : https://youtu.be/rc-EaPsVjqk

https://youtu.be/rc-EaPsVjqk


Final remarks
• Innovations in networking come from applications
• The network stack is vital to application performance in distributed settings
• Many opportunities for the Netdev community to impact ML networking!
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Congestion control Topology optimization

Congestion

Datapath engineering

ghobadi@mit.edu
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