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Abstract
In hyper-scale data centers,  the demand for transport protocols
optimized for RPC performance is on the rise. Homa stands out as
a protocol designed specifically for these settings, ensuring rapid
request/reply messaging. Through our analysis, performance on
Homa versus TCP revealed marked benefits, particularly for RPC
messages below 50k,  considering both latency and throughput.
However, Homa's adoption as a universal RPC transport protocol
in data centers faces following challenges:

• It  is  best  suited  for  networks  with  hardware
latencies under a few microseconds, restricting its
use primarily to intra-rack servers.

• Homa's  congestion  window  size  is  based  on
RTT_bytes  (equivalent  to  BDP).  Currently,  a
universal value is set for all peers, which doesn't
align with the varied RTTs and receiver downlink
bandwidths observed in data centers.

• Homa  presumes  a  receiver's  full  downlink
commitment,  but  real-world  scenarios  involve
sharing  with  protocols  like  TCP,  potentially
leading to unnoticed congestion.

• Homa's  message-based  interface,  while  ensuring
complete  message  delivery,  hinders  efficient
pipelining,  resulting in decreased throughput for
larger RPC messages compared to TCP.

This paper introduces enhancements to Homa's congestion
control,  incorporating  dynamic  RTT  detection  and  peer
adjustable  windows  based  on  RTT-induced  congestion
insights.  These  improvements  facilitate  Homa's
applicability in environments with non-uniform RTTs and
enable  its  coexistence  with  TCP  traffic  without
compromising throughput.
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 Introduction
Today,  hyperscale  Data  center  networks  are  becoming
increasingly complex, with a variety of different devices

and technologies being used. This complexity can make it
difficult  to  achieve  low  latency  and  high  throughput  in
RPC communication. It  also adds challenges to adopting
new technology. 

Currently,  TCP  is  the  primary  transport  protocol  for
RPC communication  in  these  data  centers,  owing  to  its
reliability,  end-to-end  error  management,  and  ubiquitous
support  across  major  OSs  and  programming  languages.
However,  TCP's  high  latency  for  short  messages,
particularly under mixed workloads, underscores the need
for innovative transport protocols and advanced congestion
control mechanisms.

RDMA,  a  high-performance  network  technology,
promises  to  trim  down  RPC  communication  latency.  It
facilitates  applications  in  accessing  memory  across
networked  machines  without  engaging  the  operating
system, thereby considerably reducing latency, especially
for short messages. Yet, the complexities in programming,
memory  management,  and  the  prerequisite  of  RDMA-
equipped  NICs  and  switches,  along  with  its  inherent
scalability  limitation  concerning  concurrent  connections,
can sometimes overshadow its advantages.

Enter Homa [1]– an innovative solution tailored for RPC
frameworks  in  data  centers.  It  boasts  unparalleled
efficiency for networks with microsecond-range hardware
latencies,  striving  for  the  most  minimal  tail  latency  for
short messages, even amidst high network loads and varied
message lengths. 

Our  performance  analysis  of  Homa  against  TCP,
highlighting its  clear  edge,  especially for  RPC messages
under  50k,  regarding  latency  and  throughput.  Yet,  for
message sizes exceeding 50k, Homa's throughput efficacy
is inferior to that of TCP. 

Currently,  Homa  assuming  network  is  uniform and  a
single  message  will  consume  the  entire  downlink
bandwidth of  a  receiver.  The transmission and reception
window sizes are guided by RTT_bytes,  equating to the
product  of  a  network  link's  capacity  and  its  round-trip
delay. Fine-tuning this value is crucial for Homa's optimal
performance. Presently, a single pre-set value is applied to
all peers, but this isn't ideal given the diverse RTTs and
receiver  downlink  bandwidths.  Real-time  per-peer  RTT
detection is essential.

Additionally,  Homa  permits  senders  to  unilaterally
transmit  one  BDP  of  data  for  each  message  without
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awaiting grants. If multiple large messages are ready to be
sent to the same recipient (multiple nodes incast with large
message),  congestion  issues  arise  .  Current  Homa  lacks
congestion control in these situations. When the buffered
unscheduled  packets  exceed  thresholds,  Homa  should
proactively send alerts to sender to curb the limits for new
transmissions.

Another  oversight  is  that  Homa assumes  unscheduled
packets  will  dominate  the  sender-side  bandwidth.  With
predominantly large messages, the scheduled section could
consume significant bandwidth, necessitating a decrease in
unscheduled  data  allocation.  Receivers  can  send
unscheduled  packet  ratio  to  sender  side  to  adjust
allocations  of  unscheduled  bytes  based  on  recent  traffic
patterns.

Homa assumes that  the entire downlink of  receiver  is
dedicated  to  homa.  But  in  reality,  the  downlink  mostly
needs to be shared with other protocols like TCP. This will
introduce congestion that is not easily detected by homa.
Homa needs capability to detect congestion due to network
resources  shared  with  other  protocols  and  dynamically
adjust unscheduled traffic based on congestion level. 
This  paper  delves  deep  into  augmenting  the  throughput
performance of  extensive RPC messages and focuses on
enhancing congestion control in Homa to extend its usages.

We  propose  several  enhancements  to  Homa  in  this
paper:

1. Dynamic per-peer BDP detection.
2. RTT-informed congestion detection.
3. Adaptive  per-peer  window  adjustments  for

congestion management.
4. Introduce "Homa RPC streaming".

Homa Congestion Control Enhancements

per-peer RTT detection

The  BDP  should  be  computed  using  the  minimal  RTT
(Round-Trip Time) value. Employing this approach aids in
mitigating  latency  perturbations  instigated  by  the
accumulation  in  software  buffers.  This  minimum  RTT,
referred  to  as  peer_rtt_min,  is  discovered  via  the
RTT_PROBE control message.

Homa  will  continuously  monitor  the  RTT  value  for
every active peer using the RTT_PROBE control message.
This  message  is  dispatched  whenever  there's  a  new
message coming in,  and the interval  exceeds 1 ms.  The
priority for this RTT_PROBE is aligned with that of the
briefest  unscheduled  packet,  ensuring  its  direct
transmission without any throttling. 

The RTT probe interval can be adjusted through sysctl
value rtt_probe_interval_us. It's default value is set to 1ms

to reduce the overhead .  When the recent  RTT value is
above  the  certain  high  threshold,  network  congestion  is
detected,  the  probe  interval  will  be  changed  more
frequently  to  keep  recent  RTT  value  more  updated.
Currently, this new interval is set to 8 * RTT_MIN when
network congestion is detected in the peer down link. 

RTT_PROBE  message  is  used  to  detect  each  peer's
current  RTT  value,  called  peer_rtt_recent.  Here  is  the
definition of rtt_probe and rtt_response message 
struct rtt_probe_header {
struct common_header common;
__be64 timestamp_ns;
__be32 link_mbps;
} __attribute__((packed));

When peer  receives  PROBE message,  it  will  respond
with RTT_RESPS control message directly. RTT_RESPS
is defined with following structure format
struct rtt_probe_resp_header {
struct common_header common;
__be64 timestamp_ns;
__be32 link_mbps;
} __attribute__((packed));

When  sender  receives  RTT_RESPS  message,  it  will
compare  it  with  current  timestamp  to  calculate  peer's
current  RTT called  peer_rtt_recent.  peer_rtt_min  defines
the minimum value received among all peer_rtt_recent. 
If  detected  peer_rtt_recent  is  less  than  peer_rtt_min,
peer_rtt_min  will  be  updated.  After  a  few  rounds  of
probing , peer_rtt_min will be stabilized. Peer BDP value
will be calculated based on peer_rtt_min.

To reduce noise, peer_rtt_recent can be averaged with
previous value. 

Congestion detection 
Homa  uses  peer_rtt_recent  and  peer_rtt_min  to  detect
traffic jams for the receiver.
There  are  a  few  peer_rtt_min  based  threshold  values
defined to measure traffic condition of the link: 
gso_delay = gso_pkt_data_size * 8 / peer_link_mbps ;
rtt_low = 2*( peer_rtt_min + gso_delay);
rtt_mid = 2 * rtt_low;
rtt_high = 8* peer_rtt_min;
gso_delay is value for how long a gso batch packets can be
transmitted  to  wire.  This  delay  is  added  for  all  data
packets, but control message is sent directly without batch.
This value is added back to rtt_min when calculating the
other rtt threshold. 
When peer_rtt_recent  >  rtt_high,  congestion  is  detected.
The  sender  should  use  low limit  of  unscheduled  packet
(calculated using rtt_min) to send RPC data packet .
When peer_rtt_recent < rtt_low, the link is idle, sender can
send more unscheduled packet. 
To support diverse network environments, Peer_link_mbps
is  also  passed  to  peer  via  RTT_PROBE_RESPONSE
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message.  along  with  unscheduled_ratio  defined  in  the
below section. 

Unscheduled ratio 
Initially,  the  receiver  determines  the  percentage  of
unscheduled bytes in the total incoming bytes, termed as
the "unscheduled ratio". This ratio is allocated the topmost
priorities  for  unscheduled  packets,  with  the  remaining
priorities set aside for scheduled packets. The division of
unscheduled  priorities  is  structured  so  that  each  tier
manages a consistent byte amount, and shorter messages
are  accorded  higher  priorities.  This  unscheduled  ratio  is
then communicated to the sender via grant message.
.

This ratio reflects the traffic pattern in the near future,
since the ratio reflects data collected from the first packet
of new messages.

The  unscheduled_ratio  is  also  sent  to  peer  through
RTT_PROBE message in case there are no grants to send
to the sender. 

Unscheduled window (RTT_bytes) 
Homa adjusts  how many "unscheduled" packets  it  sends
for each new message based on recent  network activity.
Here's how it decides how many unscheduled packets to
send:

If  the  current  delay  (peer_rtt_recent)  is  lower  than
rtt_mid ,  Homa thinks the network is clear.  So, it  sends
more  unscheduled  packets  by  setting  rtt_unscheduled  to
rtt_mid 

If the current delay is in the range between rtt_mid and 
rtt_high , it enters congestion control area, Homa will send 
out less unscheduled bytes. The formula to calculate 
rtt_unscheduled is:
rtt_unscheduled=rtt_low - (peer_rtt_recent - peer_rtt_mid)
*3 /8;

If  the  current  delay  is  above  rtt_high,  Homa believes
there's a traffic jam on the network. To avoid adding to the
jam,  it  aggressively  reduces  the  number  of  unscheduled
packets by setting rtt_unschduled to one GSO size.

Here  is  the  overall  algorithm  to  determine  the
rtt_unschdule value:

SET rtt_unscheduled TO peer_rtt_recent
IF rtt_unscheduled IS LESS THAN rtt_mid THEN

SET rtt_unscheduled TO rtt_mid
ELSE  IF  rtt_unscheduled  IS  GREATER  THAN  rtt_high
THEN

SET rtt_unscheduled TO 1
ELSE  IF  rtt_unscheduled  IS  GREATER  THAN  rtt_mid
AND rtt_unscheduled IS LESS THAN rtt_high THEN

SET  rtt_unscheduled  TO  rtt_low  -  (peer_rtt_recent  -
peer_rtt_mid) *3 /8
END IF

unscheduled_bytes = rtt_unscheduled * peer_link_mbps /8

Figure 1 Dynamic adjustable unscheduled window

Most  of  time,  unscheduled_bytes  is  calculated  using
rtt_mid, which is stable value calculated using rtt_min.

Another observation is that it takes about rtt_mid time
from sending first  packets  to  get  grants.  There  is  a  gap
between receivers consuming all unscheduled packets and
sender able to send out scheduled bytes. To fill this gap,
the sender can check whether the RPC throttle list is empty
or not. If it is empty, it can send more unscheduled bytes to
fill  this  gap.  The formula  for  calculating RTTbytes  will
be :
Figure 1 Dynamic Adjustable Unscheduled Window

IF RPC throttle list is empty
set rtt_unscheduled to rtt_mid
IF unscheduled_ratio is less than 40 %
Set rtt_unscheduled to half of current value 

ENDIF
ENDIF

Scheduled Window
The scheduled window on the receiver side is designated
for allocating grants to peers. It restricts the allocation to
one grant per message for each peer, ensuring a continuous
flow of BDP packets in the pipeline. The formula for the
scheduled  window  is:  scheduled_window  =  rtt_mid
*local_link_mbps >> 3; 
peer_rtt_recent is not used here due to asymmetric nature.
rtt_recent detected at receiver side may not equal to send
side.  Instead,  rtt_mid  is  used  to  keep  scheduled  BDP
packets at a more constant rate to reduce burst. 
In this context,  the scheduled ratio isn't  considered here,
since  Homa  employs  overcommitment  to  enhance  the
pipeline's  efficiency.  When  dealing  with  smaller  grants,
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scheduled  packets  can  consume  significant  processing
cycles.  Thus,  allocating  larger  grants  can  optimize  the
transmission of current priority messages. Typically, each
grant  should  be  rounded up to  a  single  GRO to  further
enhance throughput.
One possible  enhancement  is  skip grant  to  specific  peer
that  has  peer_rtt_recent  is  bigger  than rtt_high.  We will
leave this for future exploration. 

Homa Bidirectional RPC streaming
Enhancement

Since the Homa RPCs in the same stream share a lot of the
same attributes, we don't need to create a brand new Homa
RPC for each request/resposne in the stream. The overhead
of  memory  management  for  struct sk_buffs  can  not  be
saved, but we can save some efforts for locking logic and
the management of struct homa_rpcs themselves.

When the number of ongoing Homa RPCs is not high,
the  overhead  of  locking  and  struct  homa_rpcs can  be
ignored. However, under the heavy traffic load, when there
are a lot of ongoing Homa RPCs, frequently creating and
reclaiming  Homa  RPCs  can  incur  unfavorable  overhead
and exacerbate lock contention.

In  order  to  solve  this  problem,  we  equip  the  Homa
Module with the ability to support stream RPC internally.
All of the RPCs in the same stream can reuse one Homa
RPC. Decided by users, they can terminate the stream at
any  time.  As  a  result,  Homa  works  more  robustly  and
efficiently when there are multiple ongoing stream RPCs. 
On  the  other  hand,  since  stream  RPC  is  not  internally
supported  by  the  Homa  module,  grpc-homa takes  some
efforts  to  implement  it  at  the  application  level.  With
streamed  Homa  RPCs,  applications  can  support  stream-
based operation easier by just mapping stream ID to Homa
RPC ID. 

Test Setup
25G network hardware:

CPU: Intel(R) Xeon(R) Platinum 8163 (96 core,2.50GHz)
RAM: 400G DIMM DDR4 NIC: Mellanox ConnectX–4
Lx 25 Gbp TOR Switch; Arista DCS-7050SX3-48YC12-F
25G ports

100G network hardware:

CPU: Intel(R) Xeon(R) Silver 4314 (64 cores, 2.4 GHz)
RAM:  400  GB  DIMM  DDR4  NIC:  Mellanox
Technologies MT28841 dual-port 100Gb/s

TOR Switch: Ruijie Networks RG-S6580-48CQ8QC 100G
ports

Software 

Debian 10 VM s are running on each host to run cluster
benchmark test. Each vm is running Linux 5.15 kernel with
homa modules  loaded.  One Mellanox VF is  assigned to
each VM using SR-IOV. Each VM has assigned 8 vCPU
and 16 G memory

Test Tool
cp_node is a program to test the performance(including
throughput, latency, etc) of Homa or TCP.

In our test, we mainly tweak some parameters for clients
to adjust the behavior of the client node.

• workload,  workload  to  run  the  test,  could  be
fixed-size or workload type.

• client-max,  maximum  number  of  outstanding
requests  from  a  single  client  machine  (divided
equally among client ports).

• ports, number of ports on which to send requests
(one sending/receiving thread per port).

On the other hand, for both Homa server and TCP server,
we have one thread to handle all of the incoming requests.
For  fixed-size  requests,  servers  reply  with  a  100  bytes
response. For workload W4 and W5, servers reply with the
same length of the request.

Performance Evaluation
Basic performance evaluation

Figure 2 Basic performance test setup 
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Figure 3 Basic  Performance Test-Throughput  Result  for
25Gbps network

Figure  4  Basic  Performance  Test-latency  Result  for
25Gbps network

Figure 5 Basic  Performance Test-Throughput  Result  for
100 Gbps network

Figure 6 Basic Performance Test-latency Result  for 100
Gbps network

In  the  experimental  findings(Figure3-6),  the  optimized
algorithm  demonstrates 5%  to  14%  throughput
improvement for large size message between 40k to 500k
compared to static -Cast RTT_bytes configurations  under
favorable network conditions (utilizing less than 50% of
network capacity). This substantiates the precision of the
RTT  detection  mechanism.  Additionally,  under  the  w5

workload with four concurrent RPC requests, the standard
Homa protocol encounters buffer overflow issues, whereas
the enhanced Homa successfully circumvents them. 
In-cast Test
In  the  in-cast  evaluation  involving  large  messages,  an
experiment  was  conducted  between  a  Homa  server
operating on Host A and six Homa client virtual machines
situated on Host B. The setup illustrated by figure 7.
 Figure 8 show the latency test results under in-cast for
100 Gbps network. 

Figure 7 testbed setup for in-result cast test

Figure 8 In-cast Test Latency Result 

Vanilla  Homa,  utilizing  static  RTTbytes,  fails  to
proactively  manage  the  in-cast  scenario  when  multiple
servers  concurrently  direct  requests  to  a  singular  server.
Notably,  under  the  w5 workload  conditions,  the  Vanilla
Homa protocol  experienced buffer  overflow. In contrast,
the  augmented  Homa variant  effectively  mitigated  these
challenges. This underscores the efficacy of the integrated
congestion  detection  mechanisms  and  adaptive  window
adjustments in minimizing in-cast-related congestion. 

Bandwidth Split Test
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Figure 9 split traffic test setup 

In  bandwidth  split  test  illustrated  by  figure  9,  a  Homa
server and a TCP server operating on Host A, and three
Homa  client  virtual  machines  and  three  TCP  virtual
machines situated on Host B.

Figure  10  Split  Traffic  Throughput  Test  Result  for
100Gbps Network

To introduce under loader network conditions, TCP traffic
is generating using W5 load , which will consume 50 G
bandwidth,  which  about  half  of  the  total  avaible
bandwidth. Then, adding Homa traffic between the Homa
server and three Homa client nodes to observe the impact
of sharing Homa traffic and TCP traffic on the same NIC
and Switch ports. Figure 10 and 11 presents latency and
throughput metrics for both the refined and standard Homa
implementations when sharing traffic with TCP.

Based  on  the  empirical  observations,  Homa  traffic
demonstrates harmonious coexistence with TCP. There is
minimal  mutual  throughput  interference  when  ample
bandwidth is available for both traffic types. The refined
algorithm adeptly identifies network congestion instigated
by TCP, subsequently regulating its traffic emission to the
network. It is pivotal to note that the enhanced algorithm
adeptly circumvents buffer overflow challenges under the
W5  workload,  whereas  the  traditional  Homa  protocol
manifests significant latency due to this anomaly.

Figure 11 Split Traffic Latency Test Result for 100Gbps
Network

Future work 
More  accurate  RTT  measurement:  More  accurate
measurement  requires  distinguishing  between  fabric
(network) delay and host software delay in RTT.  Precise
time stamping can be applied at the very edge of the host's
network  interface  card  (NIC)  for  both  transmitted  and
received RTT probe packet.
Congestion detection base on average RTT deviation:
Deviation of  average RTT (rtt_avg)  from RTT_mid (three
times RTT_min) can be used for congestion detection.
Optimize  pacer:  Pacer  needs  to  be  aware  of  network
congestion  based  on  recent  RTT.  When  RTT  is  low,
although GRANT is not received, try to send some packets
at a relatively low rate. When RTT is high, transmit less
packets to NIC. 

Conclusion 
In  conclusion,  the  developed  RTT  detection  algorithm
demonstrates proficiency in identifying the minimum RTT
for a link, subsequently employing this as a foundation to
define  the  optimal  RTTbytes  for  unscheduled  packets.
Experimental results demonstrate 5% to 14% throughput
improvement for large size messages between 40k to 500k
compared  to  manual  RTTbytes  configurations.  Notably,
within heterogeneously structured networks, this algorithm
adeptly  detects  near-optimal  unscheduled  windows
(RTTbytes)  tailored  to  individual  links  characterized  by
diverse latencies and bandwidth capacities.

Moreover,  the  novel  algorithm  exhibits  resilience
against  buffer  overflow  scenarios  precipitated  by  big
messages in incast situations, particularly when operating
with  big  unscheduled  bytes.  Our  investigations  further
reveal  Homa's  capability  to  harmoniously  coexist  with
TCP traffic.  The  protocol  adeptly  recognizes  congestion
instigated by TCP traffic, judiciously moderating its packet
transmissions  to  the  network.  During  incast  evaluations,
Homa nodes consistently demonstrated equitable downlink
sharing,  facilitated  by  receiver-side  congestion  control
mechanisms. 
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