
Leveraging Homa: Enhancing Datacenter RPC Transport Protocols

Xiaochun Lu, zijian Zhang

ByteDance
San Jose , United states

Xiaochun.lu@bytedance.com Zijianzhang@bytedance.com

Abstract
In hyper-scale data centers, the demand for transport protocols
optimized for RPC performance is on the rise. Homa stands out as
a protocol designed specifically for these settings, ensuring rapid
request/reply messaging. Through our analysis, performance on
Homa versus TCP revealed marked benefits, particularly for RPC
messages below 50k, considering both latency and throughput.
However, Homa's adoption as a universal RPC transport protocol
in data centers faces following challenges:

• It is best suited for networks with hardware
latencies under a few microseconds, restricting its
use primarily to intra-rack servers.

• Homa's congestion window size is based on
RTT_bytes (equivalent to BDP). Currently, a
universal value is set for all peers, which doesn't
align with the varied RTTs and receiver downlink
bandwidths observed in data centers.

• Homa presumes a receiver's full downlink
commitment, but real-world scenarios involve
sharing with protocols like TCP, potentially
leading to unnoticed congestion.

• Homa's message-based interface, while ensuring
complete message delivery, hinders efficient
pipelining, resulting in decreased throughput for
larger RPC messages compared to TCP.

This paper introduces enhancements to Homa's congestion
control, incorporating dynamic RTT detection and peer
adjustable windows based on RTT-induced congestion
insights. These improvements facilitate Homa's
applicability in environments with non-uniform RTTs and
enable its coexistence with TCP traffic without
compromising throughput.

Keywords
Data Centers; RPC; Low latency; Transport protocols;
Throughput; Congestion Control;

 Introduction
Today, hyperscale Data center networks are becoming
increasingly complex, with a variety of different devices

and technologies being used. This complexity can make it
difficult to achieve low latency and high throughput in
RPC communication. It also adds challenges to adopting
new technology.

Currently, TCP is the primary transport protocol for
RPC communication in these data centers, owing to its
reliability, end-to-end error management, and ubiquitous
support across major OSs and programming languages.
However, TCP's high latency for short messages,
particularly under mixed workloads, underscores the need
for innovative transport protocols and advanced congestion
control mechanisms.

RDMA, a high-performance network technology,
promises to trim down RPC communication latency. It
facilitates applications in accessing memory across
networked machines without engaging the operating
system, thereby considerably reducing latency, especially
for short messages. Yet, the complexities in programming,
memory management, and the prerequisite of RDMA-
equipped NICs and switches, along with its inherent
scalability limitation concerning concurrent connections,
can sometimes overshadow its advantages.

Enter Homa [1]– an innovative solution tailored for RPC
frameworks in data centers. It boasts unparalleled
efficiency for networks with microsecond-range hardware
latencies, striving for the most minimal tail latency for
short messages, even amidst high network loads and varied
message lengths.

Our performance analysis of Homa against TCP,
highlighting its clear edge, especially for RPC messages
under 50k, regarding latency and throughput. Yet, for
message sizes exceeding 50k, Homa's throughput efficacy
is inferior to that of TCP.

Currently, Homa assuming network is uniform and a
single message will consume the entire downlink
bandwidth of a receiver. The transmission and reception
window sizes are guided by RTT_bytes, equating to the
product of a network link's capacity and its round-trip
delay. Fine-tuning this value is crucial for Homa's optimal
performance. Presently, a single pre-set value is applied to
all peers, but this isn't ideal given the diverse RTTs and
receiver downlink bandwidths. Real-time per-peer RTT
detection is essential.

Additionally, Homa permits senders to unilaterally
transmit one BDP of data for each message without

1

awaiting grants. If multiple large messages are ready to be
sent to the same recipient (multiple nodes incast with large
message), congestion issues arise . Current Homa lacks
congestion control in these situations. When the buffered
unscheduled packets exceed thresholds, Homa should
proactively send alerts to sender to curb the limits for new
transmissions.

Another oversight is that Homa assumes unscheduled
packets will dominate the sender-side bandwidth. With
predominantly large messages, the scheduled section could
consume significant bandwidth, necessitating a decrease in
unscheduled data allocation. Receivers can send
unscheduled packet ratio to sender side to adjust
allocations of unscheduled bytes based on recent traffic
patterns.

Homa assumes that the entire downlink of receiver is
dedicated to homa. But in reality, the downlink mostly
needs to be shared with other protocols like TCP. This will
introduce congestion that is not easily detected by homa.
Homa needs capability to detect congestion due to network
resources shared with other protocols and dynamically
adjust unscheduled traffic based on congestion level.
This paper delves deep into augmenting the throughput
performance of extensive RPC messages and focuses on
enhancing congestion control in Homa to extend its usages.

We propose several enhancements to Homa in this
paper:

1. Dynamic per-peer BDP detection.
2. RTT-informed congestion detection.
3. Adaptive per-peer window adjustments for

congestion management.
4. Introduce "Homa RPC streaming".

Homa Congestion Control Enhancements

per-peer RTT detection

The BDP should be computed using the minimal RTT
(Round-Trip Time) value. Employing this approach aids in
mitigating latency perturbations instigated by the
accumulation in software buffers. This minimum RTT,
referred to as peer_rtt_min, is discovered via the
RTT_PROBE control message.

Homa will continuously monitor the RTT value for
every active peer using the RTT_PROBE control message.
This message is dispatched whenever there's a new
message coming in, and the interval exceeds 1 ms. The
priority for this RTT_PROBE is aligned with that of the
briefest unscheduled packet, ensuring its direct
transmission without any throttling.

The RTT probe interval can be adjusted through sysctl
value rtt_probe_interval_us. It's default value is set to 1ms

to reduce the overhead . When the recent RTT value is
above the certain high threshold, network congestion is
detected, the probe interval will be changed more
frequently to keep recent RTT value more updated.
Currently, this new interval is set to 8 * RTT_MIN when
network congestion is detected in the peer down link.

RTT_PROBE message is used to detect each peer's
current RTT value, called peer_rtt_recent. Here is the
definition of rtt_probe and rtt_response message
struct rtt_probe_header {
struct common_header common;
__be64 timestamp_ns;
__be32 link_mbps;
} __attribute__((packed));

When peer receives PROBE message, it will respond
with RTT_RESPS control message directly. RTT_RESPS
is defined with following structure format
struct rtt_probe_resp_header {
struct common_header common;
__be64 timestamp_ns;
__be32 link_mbps;
} __attribute__((packed));

When sender receives RTT_RESPS message, it will
compare it with current timestamp to calculate peer's
current RTT called peer_rtt_recent. peer_rtt_min defines
the minimum value received among all peer_rtt_recent.
If detected peer_rtt_recent is less than peer_rtt_min,
peer_rtt_min will be updated. After a few rounds of
probing , peer_rtt_min will be stabilized. Peer BDP value
will be calculated based on peer_rtt_min.

To reduce noise, peer_rtt_recent can be averaged with
previous value.

Congestion detection
Homa uses peer_rtt_recent and peer_rtt_min to detect
traffic jams for the receiver.
There are a few peer_rtt_min based threshold values
defined to measure traffic condition of the link:
gso_delay = gso_pkt_data_size * 8 / peer_link_mbps ;
rtt_low = 2*(peer_rtt_min + gso_delay);
rtt_mid = 2 * rtt_low;
rtt_high = 8* peer_rtt_min;
gso_delay is value for how long a gso batch packets can be
transmitted to wire. This delay is added for all data
packets, but control message is sent directly without batch.
This value is added back to rtt_min when calculating the
other rtt threshold.
When peer_rtt_recent > rtt_high, congestion is detected.
The sender should use low limit of unscheduled packet
(calculated using rtt_min) to send RPC data packet .
When peer_rtt_recent < rtt_low, the link is idle, sender can
send more unscheduled packet.
To support diverse network environments, Peer_link_mbps
is also passed to peer via RTT_PROBE_RESPONSE

2

message. along with unscheduled_ratio defined in the
below section.

Unscheduled ratio
Initially, the receiver determines the percentage of
unscheduled bytes in the total incoming bytes, termed as
the "unscheduled ratio". This ratio is allocated the topmost
priorities for unscheduled packets, with the remaining
priorities set aside for scheduled packets. The division of
unscheduled priorities is structured so that each tier
manages a consistent byte amount, and shorter messages
are accorded higher priorities. This unscheduled ratio is
then communicated to the sender via grant message.
.

This ratio reflects the traffic pattern in the near future,
since the ratio reflects data collected from the first packet
of new messages.

The unscheduled_ratio is also sent to peer through
RTT_PROBE message in case there are no grants to send
to the sender.

Unscheduled window (RTT_bytes)
Homa adjusts how many "unscheduled" packets it sends
for each new message based on recent network activity.
Here's how it decides how many unscheduled packets to
send:

If the current delay (peer_rtt_recent) is lower than
rtt_mid , Homa thinks the network is clear. So, it sends
more unscheduled packets by setting rtt_unscheduled to
rtt_mid

If the current delay is in the range between rtt_mid and
rtt_high , it enters congestion control area, Homa will send
out less unscheduled bytes. The formula to calculate
rtt_unscheduled is:
rtt_unscheduled=rtt_low - (peer_rtt_recent - peer_rtt_mid)
*3 /8;

If the current delay is above rtt_high, Homa believes
there's a traffic jam on the network. To avoid adding to the
jam, it aggressively reduces the number of unscheduled
packets by setting rtt_unschduled to one GSO size.

Here is the overall algorithm to determine the
rtt_unschdule value:

SET rtt_unscheduled TO peer_rtt_recent
IF rtt_unscheduled IS LESS THAN rtt_mid THEN

SET rtt_unscheduled TO rtt_mid
ELSE IF rtt_unscheduled IS GREATER THAN rtt_high
THEN

SET rtt_unscheduled TO 1
ELSE IF rtt_unscheduled IS GREATER THAN rtt_mid
AND rtt_unscheduled IS LESS THAN rtt_high THEN

SET rtt_unscheduled TO rtt_low - (peer_rtt_recent -
peer_rtt_mid) *3 /8
END IF

unscheduled_bytes = rtt_unscheduled * peer_link_mbps /8

Figure 1 Dynamic adjustable unscheduled window

Most of time, unscheduled_bytes is calculated using
rtt_mid, which is stable value calculated using rtt_min.

Another observation is that it takes about rtt_mid time
from sending first packets to get grants. There is a gap
between receivers consuming all unscheduled packets and
sender able to send out scheduled bytes. To fill this gap,
the sender can check whether the RPC throttle list is empty
or not. If it is empty, it can send more unscheduled bytes to
fill this gap. The formula for calculating RTTbytes will
be :
Figure 1 Dynamic Adjustable Unscheduled Window

IF RPC throttle list is empty
set rtt_unscheduled to rtt_mid
IF unscheduled_ratio is less than 40 %
Set rtt_unscheduled to half of current value

ENDIF
ENDIF

Scheduled Window
The scheduled window on the receiver side is designated
for allocating grants to peers. It restricts the allocation to
one grant per message for each peer, ensuring a continuous
flow of BDP packets in the pipeline. The formula for the
scheduled window is: scheduled_window = rtt_mid
*local_link_mbps >> 3;
peer_rtt_recent is not used here due to asymmetric nature.
rtt_recent detected at receiver side may not equal to send
side. Instead, rtt_mid is used to keep scheduled BDP
packets at a more constant rate to reduce burst.
In this context, the scheduled ratio isn't considered here,
since Homa employs overcommitment to enhance the
pipeline's efficiency. When dealing with smaller grants,

3

scheduled packets can consume significant processing
cycles. Thus, allocating larger grants can optimize the
transmission of current priority messages. Typically, each
grant should be rounded up to a single GRO to further
enhance throughput.
One possible enhancement is skip grant to specific peer
that has peer_rtt_recent is bigger than rtt_high. We will
leave this for future exploration.

Homa Bidirectional RPC streaming
Enhancement

Since the Homa RPCs in the same stream share a lot of the
same attributes, we don't need to create a brand new Homa
RPC for each request/resposne in the stream. The overhead
of memory management for struct sk_buffs can not be
saved, but we can save some efforts for locking logic and
the management of struct homa_rpcs themselves.

When the number of ongoing Homa RPCs is not high,
the overhead of locking and struct homa_rpcs can be
ignored. However, under the heavy traffic load, when there
are a lot of ongoing Homa RPCs, frequently creating and
reclaiming Homa RPCs can incur unfavorable overhead
and exacerbate lock contention.

In order to solve this problem, we equip the Homa
Module with the ability to support stream RPC internally.
All of the RPCs in the same stream can reuse one Homa
RPC. Decided by users, they can terminate the stream at
any time. As a result, Homa works more robustly and
efficiently when there are multiple ongoing stream RPCs.
On the other hand, since stream RPC is not internally
supported by the Homa module, grpc-homa takes some
efforts to implement it at the application level. With
streamed Homa RPCs, applications can support stream-
based operation easier by just mapping stream ID to Homa
RPC ID.

Test Setup
25G network hardware:

CPU: Intel(R) Xeon(R) Platinum 8163 (96 core,2.50GHz)
RAM: 400G DIMM DDR4 NIC: Mellanox ConnectX–4
Lx 25 Gbp TOR Switch; Arista DCS-7050SX3-48YC12-F
25G ports

100G network hardware:

CPU: Intel(R) Xeon(R) Silver 4314 (64 cores, 2.4 GHz)
RAM: 400 GB DIMM DDR4 NIC: Mellanox
Technologies MT28841 dual-port 100Gb/s

TOR Switch: Ruijie Networks RG-S6580-48CQ8QC 100G
ports

Software

Debian 10 VM s are running on each host to run cluster
benchmark test. Each vm is running Linux 5.15 kernel with
homa modules loaded. One Mellanox VF is assigned to
each VM using SR-IOV. Each VM has assigned 8 vCPU
and 16 G memory

Test Tool
cp_node is a program to test the performance(including
throughput, latency, etc) of Homa or TCP.

In our test, we mainly tweak some parameters for clients
to adjust the behavior of the client node.

• workload, workload to run the test, could be
fixed-size or workload type.

• client-max, maximum number of outstanding
requests from a single client machine (divided
equally among client ports).

• ports, number of ports on which to send requests
(one sending/receiving thread per port).

On the other hand, for both Homa server and TCP server,
we have one thread to handle all of the incoming requests.
For fixed-size requests, servers reply with a 100 bytes
response. For workload W4 and W5, servers reply with the
same length of the request.

Performance Evaluation
Basic performance evaluation

Figure 2 Basic performance test setup

4

Figure 3 Basic Performance Test-Throughput Result for
25Gbps network

Figure 4 Basic Performance Test-latency Result for
25Gbps network

Figure 5 Basic Performance Test-Throughput Result for
100 Gbps network

Figure 6 Basic Performance Test-latency Result for 100
Gbps network

In the experimental findings(Figure3-6), the optimized
algorithm demonstrates 5% to 14% throughput
improvement for large size message between 40k to 500k
compared to static -Cast RTT_bytes configurations under
favorable network conditions (utilizing less than 50% of
network capacity). This substantiates the precision of the
RTT detection mechanism. Additionally, under the w5

workload with four concurrent RPC requests, the standard
Homa protocol encounters buffer overflow issues, whereas
the enhanced Homa successfully circumvents them.
In-cast Test
In the in-cast evaluation involving large messages, an
experiment was conducted between a Homa server
operating on Host A and six Homa client virtual machines
situated on Host B. The setup illustrated by figure 7.
 Figure 8 show the latency test results under in-cast for
100 Gbps network.

Figure 7 testbed setup for in-result cast test

Figure 8 In-cast Test Latency Result

Vanilla Homa, utilizing static RTTbytes, fails to
proactively manage the in-cast scenario when multiple
servers concurrently direct requests to a singular server.
Notably, under the w5 workload conditions, the Vanilla
Homa protocol experienced buffer overflow. In contrast,
the augmented Homa variant effectively mitigated these
challenges. This underscores the efficacy of the integrated
congestion detection mechanisms and adaptive window
adjustments in minimizing in-cast-related congestion.

Bandwidth Split Test

5

Figure 9 split traffic test setup

In bandwidth split test illustrated by figure 9, a Homa
server and a TCP server operating on Host A, and three
Homa client virtual machines and three TCP virtual
machines situated on Host B.

Figure 10 Split Traffic Throughput Test Result for
100Gbps Network

To introduce under loader network conditions, TCP traffic
is generating using W5 load , which will consume 50 G
bandwidth, which about half of the total avaible
bandwidth. Then, adding Homa traffic between the Homa
server and three Homa client nodes to observe the impact
of sharing Homa traffic and TCP traffic on the same NIC
and Switch ports. Figure 10 and 11 presents latency and
throughput metrics for both the refined and standard Homa
implementations when sharing traffic with TCP.

Based on the empirical observations, Homa traffic
demonstrates harmonious coexistence with TCP. There is
minimal mutual throughput interference when ample
bandwidth is available for both traffic types. The refined
algorithm adeptly identifies network congestion instigated
by TCP, subsequently regulating its traffic emission to the
network. It is pivotal to note that the enhanced algorithm
adeptly circumvents buffer overflow challenges under the
W5 workload, whereas the traditional Homa protocol
manifests significant latency due to this anomaly.

Figure 11 Split Traffic Latency Test Result for 100Gbps
Network

Future work
More accurate RTT measurement: More accurate
measurement requires distinguishing between fabric
(network) delay and host software delay in RTT. Precise
time stamping can be applied at the very edge of the host's
network interface card (NIC) for both transmitted and
received RTT probe packet.
Congestion detection base on average RTT deviation:
Deviation of average RTT (rtt_avg) from RTT_mid (three
times RTT_min) can be used for congestion detection.
Optimize pacer: Pacer needs to be aware of network
congestion based on recent RTT. When RTT is low,
although GRANT is not received, try to send some packets
at a relatively low rate. When RTT is high, transmit less
packets to NIC.

Conclusion
In conclusion, the developed RTT detection algorithm
demonstrates proficiency in identifying the minimum RTT
for a link, subsequently employing this as a foundation to
define the optimal RTTbytes for unscheduled packets.
Experimental results demonstrate 5% to 14% throughput
improvement for large size messages between 40k to 500k
compared to manual RTTbytes configurations. Notably,
within heterogeneously structured networks, this algorithm
adeptly detects near-optimal unscheduled windows
(RTTbytes) tailored to individual links characterized by
diverse latencies and bandwidth capacities.

Moreover, the novel algorithm exhibits resilience
against buffer overflow scenarios precipitated by big
messages in incast situations, particularly when operating
with big unscheduled bytes. Our investigations further
reveal Homa's capability to harmoniously coexist with
TCP traffic. The protocol adeptly recognizes congestion
instigated by TCP traffic, judiciously moderating its packet
transmissions to the network. During incast evaluations,
Homa nodes consistently demonstrated equitable downlink
sharing, facilitated by receiver-side congestion control
mechanisms.

6

References

Proceedings Paper Published
1. John Ousterhout Stanford University, “A Linux Kernel
Implementation of the Homa Transport Protocol”, 2021
USENIX Annual Technical Conference.

∗2. Radhika Mittal (UC Berkeley), Vinh The Lam, Nandita
∗Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi

(Microsoft), Amin Vahdat, Yaogong Wang, David
Wetherall, David Zats, “TIMELY: RTT-based Congestion
Control for the Datacenter” SIGCOMM ’15 August 17-21,
2015, London, United Kingdom
3. Behnam Montazeri, Yilong Li, Mohammad Alizadeh† ,
and John Ousterhout Stanford University, +MIT, “Homa:
A Receiver-Driven Low-Latency Transport Protocol Using
Network Priorities”,SIGCOMM ’18, August 20-25, 2018,
Budapest, Hungary

Acknowledgements
We would like to extend our gratitude to John Ousterhout
from Stanford University for his invaluable advice and
direction. This work was supported by bytedance.

7

