
Scripting the Linux Routing Table with Lua

Lourival Vieira Neto, Marcel Moura, Ana Lúcia de Moura and Roberto Ierusalimschy
Ring-0 Networks and Departamento de Informática, PUC-Rio

Rio de Janeiro, Brazil
lourival.neto@gmail.com, marcel.stanley@gmail.com, analuciadm@gmail.com, roberto@inf.puc-rio.br

Abstract

Scriptable Operating System is a design concept based on the
idea that operating systems should allow users to write scripts
to tailor the system to their needs. This paper presents how
Lunatik, a kernel-scripting framework for Linux, has evolved
over time in terms of flexibility and extensibility, from being
an environment for scripting kernel subsystems, to become a
much richer scripting environment, suitable for extending the
Linux operating system itself. It then details how Lunatik’s
modularized architecture, along with its enriched set of ex-
tension libraries may be used for implementing a kernel-level
adaptive routing service, which allows the system to monitor
the reliability of a network route and adjust its routing table
dynamically in case of failure by using an alternative route,
previously chosen by an alternative gateway election protocol.

Keywords
Lua, Kernel Scripting, Network Routing

1 Introduction
Lunatik is a framework for scripting the Linux kernel with
the Lua programming language [7, 8], based on the design
concept of Scriptable Operating Systems [13]. This frame-
work was previously used for scripting the Netfilter and XDP
subsystems [11], allowing users to create complex network
filters using Lua. For instance, it has been used for filtering
L7 traffic such as HTTP and HTTPS.

In this paper, we present the evolution of this framework
and its usage on implementing a kernel-level adaptive routing
service. This service allows the system to monitor the relia-
bility of a network route and adjust its routing table dynam-
ically in case of failure. For instance, a home router might
use such service to fall back to the cellular network using a
mobile phone as an alternative gateway.

For implementing this adaptive routing service, we relied
on Lunatik libraries for binding kernel facilities, such as net-
device notification chain, kthread, socket, RCU (read-copy-
update) and FIB (Forwarding Information Base). This ser-
vice also implements a protocol that allows nodes to advertise
themselves as alternative gateways and the router to notify a
node that it has been elected as the new gateway (or that the
network has been reestablished and using that node as gate-
way is no longer necessary).

The rest of this paper is organized as follows. Section 2
discusses the evolution and current state of the Lunatik frame-
work. Section 3 presents our kernel-level adaptive routing
service. Finally, Section 4 presents our final remarks.

2 The Lunatik Framework
When first introduced, Lunatik provided an environment for
scripting the Linux kernel that consisted of the Lua interpreter
properly embedded in the kernel, a common user interface
— a device driver — for dynamically loading scripts, and an
API for using the scripting environment from kernel subsys-
tems [13]. To make subsystems scriptable, kernel developers
created bindings that allowed functions and data structures to
be shared between the kernel and Lua scripts. Figure 1 illus-
trates Lunatik’s original architecture.

Figure 1: Lunatik’s original architecture

Lunatik’s initial implementation provided a suitable envi-
ronment for scripting kernel subsystems that could execute
in process context, such as CPUfreq [13]. However, it was
not adequate for subsystems that involve stricter execution re-
quirements, such as those running in software interrupt con-
text, as is typically the case with networking subsystems.
To meet those requirements, the following version of Lu-



natik dropped its common user interface and APIs. Devel-
opers then had to use the plain Lua C API for embedding
the Lua interpreter in their kernel subsystems, and needed to
provide their own mechanism for loading scripts from user
space. Based on this Lunatik version, NFLua [4, 11] and
XDPLua [12, 11], scripting environments for Netfilter [10]
and XDP (eXpress Data Path) [6] respectively, used dedi-
cated Netlink sockets [1] for loading scripts from user space.
Moreover, NFLua allowed users to create new Lua execution
states dynamically using its Netlink socket and XPDLua cre-
ated one Lua state per CPU core in advance. In both cases,
the specific scripting environments were responsible for syn-
chronizing concurrent accesses to their Lua states.

The current version of the Lunatik framework provides
a richer scripting environment, with improved APIs and li-
braries for both extending the kernel and the framework it-
self. Its new implementation, presented in Figure 2, is now
modular and partially developed in Lua.

Figure 2: Modular implementation of the Lunatik framework

We have split the original Lunatik kernel module into sev-
eral kernel modules and kernel-level Lua scripts. The Lunatik
core module contains the Lua interpreter modified to run in
the kernel and APIs for creating and managing Lunatik run-
times. This new data structure wraps a Lua execution state, a
lock type (e.g., mutex or spinlock), and a flag to indicate if the
control execution flow can sleep. Thus, the framework can
now use appropriate synchronization and memory allocation
primitives for scripts running both in process and software
interrupt context.

The Lunatik run module implements a base scripting envi-
ronment for the kernel as a whole, instead of providing sup-
port for creating specific environments for each target subsys-
tem. It creates a special runtime for running a kernel-level
Lua script that is responsible for bootstrapping the frame-
work. This kernel-level script implements a device driver, the
Lunatik driver, that provides the framework interface with the
user space, allowing the Lunatik command-line tool to create
new runtimes to load and execute Lua scripts for extending
the kernel. The new Lunatik APIs permit loading files syn-

chronously and directly from the file system, enabling us to
simplify the management of Lua states. This feature also al-
lows user-defined Lua scripts to be modularized and imple-
mented using multiple files.

Lunatik’s newest version also introduces a new set of Lua
extension libraries that enriches the scripting environment.
The Device library permits implementing character device
drivers in Lua. The Socket library provides support for ker-
nel networking handling by offering APIs to send and receive
messages using the underlying kernel socket API. The Thread
library gives access to kernel thread facilities [2], and allows
spawning new kernel threads with Lunatik runtimes. Through
the Notifier library, a script can register callback functions
on keyboard and netdevice notifier chains [3]. The RCU li-
brary provides an interface for the kernel Read-copy update
(RCU) synchronization mechanism [9]. It allows creating
and sharing hash tables among Lunatik runtimes. The FIB li-
brary gives access to the kernel Forwarding Information Base
(FIB), allowing scripts to add and remove routing rules.

3 Adaptive Routing Service
Using the current version of the Lunatik framework, we have
developed a kernel-level service to monitor network inter-
faces and adjust the system routing table dynamically in case
of link failure. This adaptive routing service can be used to
fall back to an alternative gateway when the default gateway
interface is down. For instance, a home router may rely on
this service to fall back to the cellular network using a mobile
phone as the alternative gateway.

Our adaptive routing service consists of two components,
implemented by Lua scripts: a service daemon and a notifica-
tion handler. The service daemon is responsible for listening
to alternative gateway candidates. The notification handler is
used for detecting when the network interface of the default
gateway is down.

We have developed a simplified network protocol to sup-
port this adaptive routing service. This protocol allows nodes
to advertise themselves as alternative gateways and the router
to notify a node to enable or disable itself as the elected alter-
native gateway.

This adaptive routing protocol works as follows. Nodes
periodically send UDP datagrams to the router indicating the
latency of their alternative route in microseconds. Whenever
the router receives a datagram from a node, it checks if the
current elected gateway has expired or if the node has a better
latency than the current elected gateway. If one of these con-
ditions is true, the router elects the node as the new alternative
gateway. Whenever the router detects a link failure, it updates
its routing table, setting a predefined IP address as the default
gateway, and sends a TCP message to the alternative gate-
way notifying it to enable its alternative route. Whenever the
router detects that the link has been reestablished, it restores
its routing table and sends a TCP message to the alternative
gateway notifying it to disable its alternative route.

To run the adaptive routing service, first we need to create a
custom routing table for the alternative route. This table must
indicate the predefined IP address as the default gateway. We
can do this using the regular iproute2 utilities. Then, we need
to run the service using the Lunatik driver. We can do this



by calling the Lunatik command-line tool, indicating the Lua
script file that implements such service, as follows:

lunatik run failover/service

The Lunatik command writes the following
Lua chunk in the Lunatik device to create a new
runtime to run the Lua script file (installed on
/lib/modules/lua/failover/service.lua).

local script = "failover/service"

lunatik.__runtimes[script] = lunatik.runtime(script)

Figure 3 shows the Lua script loaded to execute the service.

1 local lunatik = require("lunatik")

2 local thread = require("thread")

3 local notifier = require("notifier")

4 local inet = require("socket.inet")

5 local fib = require("fib")

6 local rcu = require("rcu")

7 local conf = require("failover.conf")

8
9 local netdev = notifier.netdev

10 local notify = notifier.notify

11
12 local elected = rcu.table(8)

13 rcu.publish("elected", elected)

14
15 local function alt_gateway(state)

16 local client <close> = inet.tcp()

17 client:connect(elected.ip, conf.port)

18 client:send(state)

19 end

20
21 local state = "down"

22 local function failover(event, ifname)

23 if ifname ˜= conf.wan then return notify.OK end

24
25 if event == netdev.UP then

26 state = "up"

27 elseif event == netdev.CHANGE then

28 if state == "up" then

29 state = "down"

30 fib.newrule(conf.table_id, conf.priority)

31 alt_gateway("up")

32 else

33 state = "up"

34 fib.delrule(conf.table_id, conf.priority)

35 alt_gateway("down")

36 end

37 end

38 end

39
40 notifier.netdevice(failover)

41
42 local daemon = "failover/daemon"

43 thread.run(lunatik.runtime(daemon), daemon)

Figure 3: Adaptive Routing Service

When the service starts, it first requires the Lua extension
libraries, described in the previous sections, and a Lua script
(failover/conf.lua), used for configuration (lines 1 –

9). Using the RCU library, the service also creates and shares
a hash table that will be used to store the elected alternative
gateway (lines 11 – 12).

In line 39, the service uses the Notifier library to register
a Lua callback that handles network device events. Thus, the
service can detect when the state of the network interface of
the default gateway has changed and take proper action on
enabling the alternative route. To enable the alternative route,
the service uses the FIB and the Socket libraries. In lines 29
and 33, the callback function, failover, uses the Notifier
library, respectively, to add and remove a routing rule. Func-
tion alt_gateway (lines 14 – 18) uses the Socket library
to notify the elected alternative gateway.

Finally, after registering the notifier callback, the service
starts a new kernel thread to implement a daemon for listening
to alternative gateway candidates and electing a new gateway
(lines 41 – 42).

The service daemon listens to the local network for receiv-
ing advertisements of the alternative gateways. The daemon
firstly retrieves the RCU hash table created beforehand by its
parent runtime to store the elected gateway. After that, it cre-
ates a socket to bind a UDP port for listening to the alternative
gateways. Then, whenever it receives an advertisement from
an alternative gateway, it checks if the latency indicated is
better than the one from the current elected gateway. If that is
true, it elects the gateway as the new alternative route.

4 Final Remarks
In this paper we have discussed how the Lunatik framework
has evolved in terms of flexibility and extensibility, providing
now a much richer environment for scripting the Linux ker-
nel. Its new modular implementation permits creating kernel
extensions in Lua directly on top of the framework, instead
of depending only on adding bindings for calling scripts from
kernel subsystems. It also provides facilities for creating new
libraries for extending the framework itself, allowing the cre-
ation of a new sort of kernel extensions with Lua.

We have also presented a kernel-level adaptive routing ser-
vice that allows the system to fall back to an alternative gate-
way when a network interface is down. This service was de-
veloped as two small Lua scripts with around 40 lines of code
each, using the libraries provided by the Lunatik framework
to extend the kernel with a new feature.

The new version of Lunatik can also interoperate with other
previous kernel scripting environments that use the Lua inter-
preter embedded in the kernel. For instance, NFLua and XD-
PLua can still use the plain Lua C API and also share libraries
with the new environment. In the adaptive routing service
case, we could use NFLua and XDPLua to implement spe-
cific filters when the alternative gateway is enabled. More-
over, ZFS [5], which uses its own Lua interpreter version,
could share a single Lua interpreter with Lunatik without em-
bracing the framework as a whole.

Acknowledgments
We thank Pedro Tammela, Victor Nogueira, Chengzhi Tan,
Caio Messias, Iruatã Souza and Jorge Pereira for all their



valuable contribution to the development of the Lunatik
framework.

References
[1] Ayuso, P. N.; Gasca, R. M.; and Lefevre, L.

2010. Communicating between the kernel and user-
space in Linux using Netlink sockets. Software:
Practice and Experience 40(9). https://perso.ens-
lyon.fr/laurent.lefevre/pdf/JS2010 Neira Gasca Lefevre.pdf.

[2] Corbet, J. 2004. Kernel Threads Made Easy.
https://lwn.net/Articles/65178/.

[3] Corbet, J. 2005. Making Notifiers Safe.
https://lwn.net/Articles/160953/.

[4] CUJO LLC. NFLua. https://github.com/cujoai/nflua.
[5] FreeBSD. 2021. ZFS-PROGRAM(8) System Manager’s

Manual. https://man.freebsd.org/cgi/man.cgi?query=zfs-
program&manpath=FreeBSD+13.2-
RELEASE+and+Ports.

[6] Hoiland-Jorgensen, T.; Brouer, J. D.; Borkmann, D.;
Fastabend, J.; Herbert, T.; Ahern, D.; and Miller,
D. 2018. The eXpress data path: fast pro-
grammable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th Interna-
tional Conference on emerging Networking EXperiments
and Technologies (CoNEXT’18), 54–66. Association
for Computing Machinery (ACM), New York, USA.
https://dl.acm.org/doi/abs/10.1145/3281411.3281443.

[7] Ierusalimschy, R. 2016. Programming in Lua. Lua.org,
Fourth edition.

[8] Lua.org. The Programming Language Lua.
http://www.lua.org.

[9] McKenney, P. 2007. What is RCU, Fundamentally?
https://lwn.net/Articles/262464/.

[10] netfilter.org. Netfilter: firewalling, NAT, and packet
mangling for Linux. http://www.netfilter.org.

[11] Neto, L. V.; Nogueira, V.; de Moura, A. L.;
and Ierusalimschy, R. 2020. Linux Net-
work Scripting with Lua. In Netdev 0x14,
THE Technical Conference on Linux Networking.
https://netdevconf.info//0x14/pub/papers/22/0x14-
paper22-talk-paper.pdf.

[12] Nogueira, V. B. XDPLua.
https://victornogueirario.github.io/xdplua.

[13] Vieira Neto, L.; Ierusalimschy, R.; de Moura, A. L.;
and Balmer, M. 2014. Scriptable Operating Systems
with Lua. In Proceedings of the 10th ACM Sympo-
sium on Dynamic Languages (DLS’14), 2–10. Associa-
tion for Computing Machinery (ACM), New York, USA.
https://dl.acm.org/doi/proceedings/10.1145/2661088.


