
Integrating eBPF Into P4TC
Netdev conf 0x17 (Nov 02/2023)

Vancouver, Canada

Jamal Hadi Salim
Deb Chatterjee
Victor Nogueira
Pedro Tammela
Tomasz Osinski

Evangelos Haleplidis
Sosutha Sethuramapandian
Balachandher Sambasivam

Usha Gupta
Komal Jain

Community Historical Perspective
● Many informal hallway and online discussions (2016)
● Netdev 2.2 (Seoul, 2017)

○ Matty Kadosh, "P4 Offload", https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop04.pdf
○ Prem Jonnalagadda, "Mapping tc to P4", https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop06.pdf

● ONF 5th Workshop(Stanford, 2018)
○ Jamal Hadi Salim, "What P4 Can Learn From Linux Traffic Control",

https://opennetworking.org/wp-content/uploads/2020/12/Jamal_Salim.pdf
● First ever P4 TC workshop, Intel, Santa Clara, 2018

○ Many Speakers (Barefoot, Intel, Cumulus, Melanox, Vmware, Mojatatu, and others)
https://files.netdevconf.info/d/5aa8c0ca61ea4e96bb46/

● Netdev 0x12 (Montreal, 2018)
○ Antonin Bas and R. Krishnamoorthy, "Instrumenting P4 in the Kernel"

https://www.files.netdevconf.info/d/9535fba900604dcd9c93/files/?p=/Instrumenting%20P4%20in%20the%20Linux%2
0kernel.pdf

● Netdev 0x13 (Prague, 2019)
○ Marian Pritsak and Matty Kadosh, "P4 Compiler Backend for TC",

https://legacy.netdevconf.info/0x13/session.html?p4-compiler-backend-for-tc

2

https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop04.pdf
https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop06.pdf
https://opennetworking.org/wp-content/uploads/2020/12/Jamal_Salim.pdf
https://files.netdevconf.info/d/5aa8c0ca61ea4e96bb46/
https://files.netdevconf.info/d/5aa8c0ca61ea4e96bb46/
https://www.files.netdevconf.info/d/9535fba900604dcd9c93/files/?p=/Instrumenting%20P4%20in%20the%20Linux%20kernel.pdf
https://www.files.netdevconf.info/d/9535fba900604dcd9c93/files/?p=/Instrumenting%20P4%20in%20the%20Linux%20kernel.pdf
https://legacy.netdevconf.info/0x13/session.html?p4-compiler-backend-for-tc

Motivation

Goal: Grow Network Programmability ecosystem
● Datapath definition using P4

○ P4 Linux kernel-native implementation
○ Compiler generates the rest

■ Mundane developer knowledge moved into compiler
■ Reduced developer dependency
■ Reduced upstream effort

Motivation
Goal: Grow Network Programmability ecosystem
● Why P4?

○ _Only_ standardized language for describing datapaths
○ Emergence of P4 Native NICs (Intel, AMD)
○ Large consumers of NICs require at minimal P4 for datapath behavioral

description if not implementation
■ Eg MS DASH
■ In our case validate using kernel datapath

○ To Each, Their Itch
■ Conway's Law: Organizations model their datapath based on their needs

● Burger King Philosophy: Have it your way
■ Ossification challenges: It's not just about traditional TCP/IP anymore

Motivation

Goal: Grow Network Programmability ecosystem
● Why Linux Kernel?

○ Mother of all networking infrastructure
■ If it beeps and/or has LEDs and maybe emits smoke it is more than likely

running Linux
○ Singular API for offloads (via vendor driver)
○ Same consistent interface regardless of infrastructure deployment

■ SW or HW

Introduction to P4TC
● Kernel independence for P4 program

○ No need to upstream any code for new P4 programs
■ Unlike other offload mechanisms like tc/flower

● Learn from previous experiences (tc flower, u32, switchdev, etc) and scale
○ Example control plane rate and latency

● P4 Architecture Independence
○ Allow for PSA, PNA, and new innovations on top

■ This is about progressing network programmability in addition to expanding P4 reach
● Vendor Independent interfacing

○ No need to deal with multiple vendor abstraction transformations (and multiple indirections)
○ No need for the (cumulus foo) punting infrastructure

Original P4TC Implementation

Scriptable Datapath See:

https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-sc
ripted.html

https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html

P4TC Original Workflow

Generated
1. P4TC Template (Pipeline, etc)
2. P4TC Introspection json

P4TC Original Datapath

Moving From Scriptable To eBPF….
● Feedback on the ML to move to eBPF, theory is:

○ eBPF datapath gives us more security (eg parser)
○ eBPF datapath gives us better performance
○ See reference [3] for evaluation

● Cost us 10 months of development and testing time!
● Patches focussing only on s/w datapath

○ Once merged will produce patches for h/w datapath
■ Ongoing effort

P4TC New Workflow

Generated
1. P4TC Template (minus parser, and

metadata residing in generated eBPF)
2. P4TC Introspection json
3. eBPF s/w datapath (at tc and/or xdp level)

*Per packet execution engine

P4TC Original To New Workflow

P4TC New Datapath

● eBPF serves as per packet exec engine
○ Parser, control block and deparser

● P4 objects that require control state are
unchanged, (attached to netns)

○ Actions, externs, pipeline, tables and
their attributes (default hit/miss
actions, etc)

○ Kfunc to access them if needed

P4TC Original To New Datapath

Control Plane Runtime CRUDXPS Interface

15

Goal: Very High throughput and Low Latency interface

#create a single table entry
tc p4ctrl create myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16 \
action myprog/control1/drop

<VERB> <NOUN [OPTIONAL DATA]>+

#Read a single Table entry
tc p4ctrl get myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16

#Read/Dump a whole Table
tc p4ctrl get myprog/table/control1/mytable

#create many entries
tc p4ctrl create myprog/table/control1/mytable \
 entry ip/dstAddr 10.10.10.0/24 prio 16 action myprog/control1/drop \
 entry ip/dstAddr 1.1.1.1/32 prio 32 action myprog/control1/drop \
 entry ip/dstAddr 8.8.8.8/32 prio 64 action myprog/control1/drop

P4TC Control API Abstraction

Interface Goals:
● High performance 1M/s + transactions

○ all the way to HW
● Interface with standard linux tooling (tc)
● Modernized Control approach to handle

incremental operations

Some Sample Progs

Sample Programs
1. Trivial program with one table looks up based on IP address, rewrites Src +

dst MAC address, send to a port
2. A ridiculous calculator program

○ Send packet with two operands + operator
■ Does math in datapath and responds

3. A stateful example (see figure)
○ mimics basic bridge

■ Can broadcast, learn etc
4. Can define very complex progs

○ 5G setup etc

Some Performance Numbers
Data path: Intel Cascade Lake CPU, NVIDIA 25Gbps CX6 card

● 64 byte packets achieved 10M packets per core and 35M on 6 cores

Control path VM on AMD Ryzen 4800H (4 allocated CPUs)

● “Worst Case” implies action params were allocated and “Best case” implies actions are
preallocated

● Test case adds 1M entries as fast as possible
● Results

○ Best case 641k entries per second on 1 core
○ Worst case 463k entries per second on 1 core
○ Best case on 4 cores 1.78M entries per second
○ Worst case on 4 cores 1.64M entries per second

Testing…
● Code has been ready for some time now

○ Checkpath
○ Sparse
○ Syzkaller
○ Compilation patch-by-patch (clang and gcc) in x86, arm64 and s390 (using tuxmake)
○ Compilation patch-by-patch 32-bit (using tuxmake)
○ Control path TDC testing

■ > 300 test cases
○ Coverity
○ Smatch
○ Coccinelle
○ Future

■ Datapath test case generation via P4C compiler
■ TDC control path test case generation via P4C compiler

Status
● Code has been ready for some time now
● Issued 6 RFCs

○ Some reviews and a few reviewed-bys
● Version 7 removed the RFC unfortunately it upset patchwork (CICD didn’t test

properly with C=1 W=1)
● Sending V8 after net-next reopens

○ Please review!
● Kernel: https://github.com/p4tc-dev/linux-p4tc-pub
● Iproute2: https://github.com/p4tc-dev/iproute2-p4tc-pub
● Compiler: https://github.com/p4lang/p4c/tree/main/backends/tc

https://github.com/p4tc-dev/linux-p4tc-pub
https://github.com/p4tc-dev/iproute2-p4tc-pub
https://github.com/p4lang/p4c/tree/main/backends/tc

References
1. https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
2. https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
3. https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pd

f
4. https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
5. https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-appr

oaches-and-evaluation
6. https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help

-here
7. https://github.com/p4lang/p4c/tree/main/backends/tc
8. https://p4.org/
9. https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html

10. https://www.amd.com/en/accelerators/pensando
11. https://github.com/sonic-net/DASH/tree/main

https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4lang/p4c/tree/main/backends/tc
https://p4.org/
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.amd.com/en/accelerators/pensando
https://github.com/sonic-net/DASH/tree/main

Integrating HW offload
Ongoing effort (not part of patchset)

Recapping P4TC
● Datapath definition using P4

○ Generate the datapath both s/w and vendor h/w
■ Functional equivalence between sw and hw

● P4 Linux kernel-native implementation
○ Kernel TC-based software datapath and Kernel-based HW datapath offload

■ Infra tooling which already has deployments
○ Seamless software and hardware symbiosis
○ Functional equivalence whether offloading or s/w datapaths (BM, VM,

Containers)
○ Ideal for datapath specification (test in s/w container, VM, etc) then offload when

hardware is available

P4TC New Workflow With HW offload

P4TC New Datapath With HW offload

