Integrating eBPF Into P4TC

Netdev conf 0x17 (Nov 02/2023)
Vancouver, Canada

Jamal Hadi Salim
Deb Chatterjee
Victor Nogueira
Pedro Tammela
Tomasz Osinski
Evangelos Haleplidis
Sosutha Sethuramapandian
Balachandher Sambasivam
Usha Gupta
Komal Jain

Community Historical Perspective

e Many informal hallway and online discussions (2016)
e Netdev 2.2 (Seoul, 2017)
O Matty Kadosh, "P4 Offload", https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop04.pdf
O Prem Jonnalagadda, "Mapping tc to P4", https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop06.pdf

e ONF 5th Workshop(Stanford, 2018)

@) Jamal Hadi Salim, "What P4 Can Learn From Linux Traffic Control",
https://opennetworking.org/wp-content/uploads/2020/12/Jamal_Salim.pdf
e First ever P4 TC workshop, Intel, Santa Clara, 2018

o Many Speakers (Barefoot, Intel, Cumulus, Melanox, Vmware, Mojatatu, and others)

https://files.netdevconf.info/d/5aa8c0cat1ead4e96bb46/
e Netdev 0x12 (Montreal, 2018) -

o Antonin Bas and R. Krishnamoorthy, "Instrumenting P4 in the Kernel"
https://www.files.netdevconf.info/d/9535fba900604dcd9c93/files/?p=/Instrumenting%20P4 %20in%20the %20Linux%?2
Okernel.pdf
e Netdev 0x13 (Prague, 2019)

o Marian Pritsak and Matty Kadosh, "P4 Compiler Backend for TC",
https://legacy.netdevconf.info/0x13/session.html?p4-compiler-backend-for-tc

https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop04.pdf
https://legacy.netdevconf.info/2.2/slides/salim-tc-workshop06.pdf
https://opennetworking.org/wp-content/uploads/2020/12/Jamal_Salim.pdf
https://files.netdevconf.info/d/5aa8c0ca61ea4e96bb46/
https://files.netdevconf.info/d/5aa8c0ca61ea4e96bb46/
https://www.files.netdevconf.info/d/9535fba900604dcd9c93/files/?p=/Instrumenting%20P4%20in%20the%20Linux%20kernel.pdf
https://www.files.netdevconf.info/d/9535fba900604dcd9c93/files/?p=/Instrumenting%20P4%20in%20the%20Linux%20kernel.pdf
https://legacy.netdevconf.info/0x13/session.html?p4-compiler-backend-for-tc

Motivation

Goal: Grow Network Programmability ecosystem

e Datapath definition using P4
o P4 Linux kernel-native implementation
o Compiler generates the rest
m Mundane developer knowledge moved into compiler

m Reduced developer dependency
m Reduced upstream effort

Motivation

Goal: Grow Network Programmability ecosystem
e Why P4?

o _Only_standardized language for describing datapaths
o Emergence of P4 Native NICs (Intel, AMD)
o Large consumers of NICs require at minimal P4 for datapath behavioral

description if not implementation
m EgMS DASH
m In our case validate using kernel datapath

o To Each, Their ltch

m Conway's Law: Organizations model their datapath based on their needs
e Burger King Philosophy: Have it your way
m Ossification challenges: It's not just about traditional TCP/IP anymore

Motivation

Goal: Grow Network Programmability ecosystem

e Why Linux Kernel?

o Mother of all networking infrastructure
m If it beeps and/or has LEDs and maybe emits smoke it is more than likely
running Linux

o Singular API for offloads (via vendor driver)
o Same consistent interface regardless of infrastructure deployment
m SWorHW

Introduction to P4TC

e Kernel independence for P4 program
o No need to upstream any code for new P4 programs
m Unlike other offload mechanisms like tc/flower
e Learn from previous experiences (tc flower, u32, switchdeyv, etc) and scale
o Example control plane rate and latency
e P4 Architecture Independence
o Allow for PSA, PNA, and new innovations on top
m This is about progressing network programmability in addition to expanding P4 reach
e \endor Independent interfacing

o No need to deal with multiple vendor abstraction transformations (and multiple indirections)
o No need for the (cumulus foo) punting infrastructure

Original P4TC Implementation

Scriptable Datapath See:

https://netdevconf.info/0x16/sessions/talk/yvour-network-datapath-will-be-p4-sc
ripted.html

https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html

P4TC Original Workflow

P4 argetiarc
Program || constraints

P4 Compiler P4TC

PATC .| Introspection
Frontend ﬁ > Backend > info

* Lore Generated
1. P4TC Template (Pipeline, etc)
2. PATC Introspection json

pipeline

|5/ Tables
|, Actions

Metadata

Parser

L4 Externs

ot

Load P4TC Program
via Netlink

v

saje[dwa)] n1ose welbold vd

Kernel

Hardware

P4TC Original Datapath

p4tc introspection
(json) (generated)

TC Infrastructure Netﬁak(o_bj
‘U32/Ped|t Like P4 runtime
} Engine objects
| Recirculate/ (
R : parser, tables,
/\ 4§ Resubmit externs,
etc)
1 Driver
“N

Hardware

Moving From Scriptable To eBPF....

e Feedback on the ML to move to eBPF, theory is:

o eBPF datapath gives us more security (eg parser)
o eBPF datapath gives us better performance
o See reference [3] for evaluation

e Cost us 10 months of development and testing time!

e Patches focussing only on s/w datapath

o Once merged will produce patches for h/w datapath
m Ongoing effort

P4TC New Workflow

Target/arch
Program | | constraints

P4 Compiler
Frontend

P4TC
,l> Backend

+ Core

(| ebpf program |

P4 control
parser
metadata

Clang compiler
with ebpf
backend

ebpf binary

3
>

e—
PATC

7 pipeline
—P Tables
—P Actions

» Externs

P4TC
Introspection
info

P4TC

PATC

PATC

vt

saje[dwa)] n1ose welbold vd

Load Program via

bpf system call

Load P4TC Program

via Netlink

7

v

Kernel

Hardware

Generated
1. P4TC Template (minus parser, and
metadata residing in generated eBPF)
2. PA4TC Introspection json
3. eBPF s/w datapath (at tc and/or xdp level)

*Per packet execution engine

P4TC Original To New Workflow

P2 argeti/arc P4 Target/arch
Program || constraints Program || constraints
l - PATC : PATC
P4 Compiler P4 Compiler
p P4TC .| Introspection P P4TC .| Introspection
Frontend Backend > N Frontend Backend > N
+ Core info + Core info
— /] N\ [N

pipeline E ebpf program PATC E

o P4 control — T pipeline |/T

|_b/ Tables o parser []

>

g metadata PATC g

LI Actions | |5 — Tables |5

I : I

0 Clang compiler P4TC 3

Metadata | | |© i Q

= vl\)llthkebzf —P Actions | |=

~ e~

Parser g acken g

3 P4ATC 3

= . — 7 Externs | ||

L4 Externs % ebpf binary =

n n

< —

Load P4TC Program Load Program via Load PATC Program
via Netlink bpf system call via Netlink
Kernel Kernel

Hardware Hardware

P4TC New Datapath

p4tc introspection
(json) (generated)

TC Infrastructure | PATC e eBPF serves as per packet exec engine
o Parser, control block and deparser
tc ebpf code €==-"1 - e P4 objects that require control state are
(generated) P4 runtime unchanged, (attached to netns)
/. /\ Recirculate| (tabI::J:?erns o Actions, externs, pipeline, tables and
Resubmit étc) ’ their attributes (default hit/miss
actions, etc)
: o Kfunc to access them if needed
kfunc (objltable |
. CRUDXPS) '
XDP code €------------- Driver

(generated) |

Hardware

P4TC Original To New Datapath

pdtc introspection
(json) (generated)

TC Infrastructure

U32/Pedit Like

Engine

s

Recirculatel
Resubmit

P4 runtime
objects
(parser, tables,
externs,
etc)

Driver

v
N

Hardware

)

TC Infrastructure

patc introspection
(json) (generated)

PATC

tc ebpf code
(generated)

€----1

P4 runtime

objects
(tables, externs,

/\ /\ Recirculate
Resubmit
etc)

kfunc (objltable

XDP code
(generated)

CRUDXPS) ’
............. Driver

Hardware

Control Plane Runtime CRUDXPS Interface

Netlink header:
Verb=CRUD +
(Implicit S+P)
e.g. PAOBJCREATE

P4TC specific header
Noun= path/to/P4TC
Object
e.g. prog/tableentry

Object Specific
Path extension
(PATC_PATH)
Object Specific
Parameters
(PATC_PARAMS)

/N

N/
VAN

N
VAN

N

Netlink with all benefits
Commands:
P40BJ CREATE
READ,UPDATE
DELETE

Introduced by PATC
Identifies higher bit of path
PipelinelD+ObjectlD

ObjectiD=P4TC_OBJ_TABLE

PATC Object Specific
further hierarchy of object
path (if needed) +
Object specific
attributes/data

Goal: Very High throughput and Low Latency interface

<VERB> <NOUN [OPTIONAL DATA]>+

#Read a single Table entry
tc p4ctrl - myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16

#Read/Dump a whole Table
tc p4ctrl - myprog/table/control1/mytable

#create a single table entry
tc p4ctrl Gréate myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16 \
action myprog/control1/drop

#create many entries

tc p4ctrl Gréate myprog/table/control1/mytable \
entry ip/dstAddr 10.10.10.0/24 prio 16 action myprog/control1/drop \
entry ip/dstAddr 1.1.1.1/32 prio 32 action myprog/control1/drop \
entry ip/dstAddr 8.8.8.8/32 prio 64 action myprog/control1/drop

P4TC Control API| Abstraction

‘compiled/integrated generic

CRUDSP
Create(path/to/object, DATA)+
Read(path/to/object)
Update(path/to/object, DATA)+
Delete(path/to/object)
Subscribe(path/to/object, filter)
Publish(path/to/object, DATA)+

PATC Netlink
Datapath: HW + SW

P4 introspection

Interface Goals:

myapp
E3E G e

e High performance 1M/s + transactions
o all the way to HW
e Interface with standard linux tooling (tc)
e Modernized Control approach to handle
incremental operations

Some Sample Progs

Sample Programs

1. Trivial program with one table looks up based on IP address, rewrites Src +
dst MAC address, send to a port

2. Aridiculous calculator program
o Send packet with two operands + operator
m Does math in datapath and responds
3. A stateful example (see figure)
o mimics basic bridge
m Can broadcast, learn etc
4. Can define very complex progs
o 5G setup etc

using HIT?
ac

Some Performance Numbers

Data path: Intel Cascade Lake CPU, NVIDIA 25Gbps CX6 card
e 64 byte packets achieved 10M packets per core and 35M on 6 cores
Control path VM on AMD Ryzen 4800H (4 allocated CPUs)

e “Worst Case” implies action params were allocated and “Best case” implies actions are

preallocated
e Test case adds 1M entries as fast as possible

e Results
o Best case 641k entries per second on 1 core
o Worst case 463k entries per second on 1 core
o Best case on 4 cores 1.78M entries per second
o Worst case on 4 cores 1.64M entries per second

Testing...

e Code has been ready for some time now
Checkpath
Sparse
Syzkaller
Compilation patch-by-patch (clang and gcc) in x86, arm64 and s390 (using tuxmake)
Compilation patch-by-patch 32-bit (using tuxmake)
Control path TDC testing
m > 300 test cases
Coverity
Smatch
Coccinelle
Future
m Datapath test case generation via P4C compiler
m TDC control path test case generation via P4C compiler

O 0O 0O O O O

O O O O

Status

e Code has been ready for some time now
e Issued 6 RFCs

o Some reviews and a few reviewed-bys
e \ersion 7 removed the RFC unfortunately it upset patchwork (CICD didn’t test
properly with C=1 W=1)
e Sending V8 after net-next reopens
o Please review!

e Kernel: https://github.com/p4tc-dev/linux-p4tc-pub
e |proute2: https://github.com/p4tc-dev/iproute2-p4tc-pub
e Compiler: https://github.com/p4lang/p4c/tree/main/backends/tc

https://github.com/p4tc-dev/linux-p4tc-pub
https://github.com/p4tc-dev/iproute2-p4tc-pub
https://github.com/p4lang/p4c/tree/main/backends/tc

References

—

https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html

3. https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4\WorkshopP4TC.pd
f

https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-appr
oaches-and-evaluation

6. https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help
-here

https://qithub.com/p4lang/p4c/tree/main/backends/tc

https://p4.org/
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.amd.com/en/accelerators/pensando
https://github.com/sonic-net/DASH/tree/main

N

e

o

—)
—~ O © 0N

https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4lang/p4c/tree/main/backends/tc
https://p4.org/
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.amd.com/en/accelerators/pensando
https://github.com/sonic-net/DASH/tree/main

Integrating HW offload

Ongoing effort (not part of patchset)

Recapping P4TC

e Datapath definition using P4 Riigma
o Generate the datapath both s/w and vendor h/w
m Functional equivalence between sw and hw g ~ o
P4 Linux kernel-native implementation s P4 ofre :’lompm_Y >
o INuU P e

@)

Kernel TC-based software datapath and Kernel-based HW datapath offload
m Infra tooling which already has deployments ,

Seamless software and hardware symbiosis 36 "'-f:"

Functional equivalence whether offloading or s/w datapaths (BM, VM, | 3 _lj‘]

Containers)

Ideal for datapath specification (test in s/w container, VM, etc) then offload when

hardware is available

Input=X output=Y

P4TC New Workflow With HW offload

Target/arch
Program constramts

U PA4ATC

P4 C I
ompiler PATC 5 Introspection
Frontend Backond i inf
+ Core s
P4 control pipeline 9
parser =
metadata PaTC 5
Tables g
B\gacnk‘:eon:i Clang compiler P4TC 2
with ebpf Actions "
backend o)
P4ATC =]
ebpf binary i %
n

Load Prog+ - /
metadata @

USif‘Q Load Program via Load P4TC Program
deviink bpf system call via Netlink
N7 Kernel

P4 program hardware
abstraction Hardware

P4TC New Datapath With HW offload

p4tc introspection
(json) (generated)

TC Infrastructure | PATC Netlink (obj
tc ebpf code €----7 r
(generated) P4 runtime
2 . objects
A R;ggﬁ;:::f (tables, externs,
etc)

1
kfunc (obj/table |
CRUDXPS) :)
XDP code €------------- Driver P4 runtime
(generated) < objects (tables,

externs, etc
Hardware Hardware P4

generated

