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What is this all about ?

▶ Low-level aspects of an ethernet link, down to hardware layout of a machine
▶ Most of this comes from a variety of embedded use-cases
▶ NICs here are very not-smart and all internal components are configured by the

kernel
▶ Most of the time, the Ethernet link isn’t the most important part of the product
▶ When it is, the requirements can be very specific
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Typical embedded hardware design
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▶ MAC : Represented by a Network Interface :
struct net_device

▶ PHY : Handled by phylib : struct phy_device
through netdev->phydev

▶ Port (Connector) : Information about it in
phy_device.port and through link_modes

Variants
▶ The PHY can be integrated in the SoC or MAC
▶ The PHY might not exist at all
▶ The PHY can be handled by a firmware
▶ The Port isn’t always BaseT (twisted copper pairs)
▶ The Port can be internal (backplane ethernet)
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Userspace interaction

Configuring the link parameters and operations
▶ Through netlink or ioctl, the PHY is hidden behind the interface

• ethtool --cable-test eth0
▶ Modern PHYs can do more than transmit data
▶ plca, cable_test, link_state, ts_info, pse and statistics gathering needs PHY

access.
• Such commands rely on the net_device.phydev pointer

▶ The connector is also mostly abstracted away, and only the protocol is considered
• We don’t know much about the physical connector type

▶ The port can in theory be selected by switching between PORT_FIBRE and PORT_TP
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Typical embedded hardware design, with SFP

SoC
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Ethernet MAC
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PCS
▶ We see more and more design with SFP cages in

embedded
▶ SFP needs a serialized input (SGMII, 1000BaseX, BaseK)
▶ Serialization and encoding is done through a PCS

component
▶ Some SoCs include a PCS within the Ethernet controller
▶ No PHY needed in that case
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Media converter
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▶ Some SoCs don’t have a PCS and output interfaces like
RGMII

▶ Some PHYs can be used as a media converter to
leverage their internal PCS

• This not the same as a standalone PCS, which can also
sit on an MDIO bus

▶ The media converter can be seen as an Ethernet PHY
and is handled by phylib
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SFP modules

SoC
CPU

Ethernet MAC

PHY
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PHY

▶ SFP modules can embed a PHY
▶ The SFP module’s PHY is also handled by phylib
▶ It has a reference to its upstream component

• If there’s a media converter : upstream is a PHY
• If not, upstream is phylink : a MAC with a PCS
• We can have in total 2 PHYs on the link
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Limitations

MAC

SFP

PHY Port

netdev.phydev

MAC

SFP

PHY PHY Port

netdev.phydev

▶ net_device.phydev points to the innermost PHY
▶ We can’t always perform PHY-specific operations on the SFP PHY
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link_topology and userspace API

MAC

SFP

PHY PHY Port

netdev.link_topo

phy.phyindex = 1 phy.phyindex = 2

▶ Keep track of PHY devices and the overall topology
▶ Assign a unique identifier to each PHY, similar to ifindex
▶ This index is used for PHY-specific netlink commands
▶ Fallback to netdev.phydev if no PHY index is set
▶ Allow passing PHY index in the ethnl header.
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Kernel API

▶ link_topology lists phy_device_node that represents phys
• phy_device_node references the PHY and its parents
• It avoids maintaining the topology info within the phy_device

▶ They are attached to a netdev but can be used without
• Some PHYs aren’t attached to any net_device : DSA shared ports

▶ link_topo_add_phy, link_topo_del_phy, list_topo_get_phy
▶ Hooks into phy_attach_direct and sfp_connect_phy
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Focus on the port

The Port designs an output of the MAC or the PHY, it can be internal of external
▶ In can be connected to a physical connector (8P8C, SFP, coax, ...)
▶ A port can only support a number of protocols, serialized or not

• Serialized interfaces have a number of lanes
▶ A port might have some status LEDs
▶ A port can also perform auxilliary functions, such as PoE
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Multi-port interfaces
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▶ PHYs can expose multiple physical interfaces
▶ The first that has the link, gets the link

• Sometimes called auto-media selection
▶ Supported on the Marvell 88x3310 PHY, the 88e6390X

switch, and much more
▶ Still per-driver behaviour, and few information and

control
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Internal API

▶ Introduce phy_port to represent one port
• Internal or External
• link_modes and link_state
• LEDs ? PoE ?

▶ Sane default is for a PHY to have one port, but they can register more
▶ Ethernet drivers can also register ports
▶ An SFP cage is also a port

• Switches from external to internal when inserting a RJ45 transceiver
▶ Also use link_topology to track ports and their location
▶ link_topo_add_port, link_topo_del_port, link_topo_get_port
▶ Exposed through netlink
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Devicetree port representation today

MAC PHY 8P8C ethernet-phy@0 {
reg = <0>;

};

MAC PHY SFP ethernet-phy@0 {
reg = <0>;
sfp = <&sfp0>;

};

MAC PHY SFP

8P8C

ethernet-phy@0 {
reg = <0>;
sfp = <&sfp0>;
// No indication about the 8P8C presence

};
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phy_port in devicetree

▶ We assume PHYs have one BaseT port by default for compatibility
▶ Having an SFP phandle isn’t enough to know how many ports are physically

connected
▶ devicetree description of the ports are needed
▶ Also useful for PHYs that have multiple possible configurations

• e.g. Marvell’s 88e1543 can either be a Quad-PHY or a Dual dual-port PHY
• Also avoids vendor-specific media-converter settings

▶ It can be also used for LED description and PoE
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Devicetree example - WIP

example.dts

ethernet-phy@0 {
...

mdi {
port@0 {

media = "10baseT", "100baseT", "1000baseT";
};

port@1 {
sfp = <&sfp>;

};
};

};
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Multi-PHY Link, for redundancy

SoC
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PHY

Connector

▶ There are other use-cases where multiple PHYs are on
the link

▶ Multiple PHYs connected on the same MII
• Non standard but found in the wild
• The Kernel is in charge of managing PHYs
• Isolate mode or Poweroff

▶ Achieve link redundancy
▶ Use multiple link standards

• BaseT1 + BaseT4
▶ We model a Software MUX
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Hardware Muxing
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▶ Internal PHY
▶ Internal Mux
▶ External PHY
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mux ▶ Internal Mux
▶ Control via

• Registers
• GPIO

▶ External Lanes
▶ External MII
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Userspace API design
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Userspace API design
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User cares about which front-facing-ports are on a given interface
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Port Multiplexer

▶ The port multiplexer has a reference to all ports attached to an interface
▶ It’s the component userspace interacts with
▶ Implements the logic for the port switchover

• First that has link
Use PHY’s Auto media detection

• Preferred port
• Userspace only (no automatic port enabling)
• Can be extended (speed based...)
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Internal APIs

▶ PHYs that have multiple ports implement muxing ops
▶ We need to make sure the PHY configuration is coherent

• We can’t enable TS offload on one PHY and not on the other
• However, cable-testing is fine

▶ We also need to ensure link configuration coherency
• Autoneg or speed settings can differ between ports
• Per-port configuration ?
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Userspace API

▶ From userspace, what’s important is mostly which port is selected
▶ The API therefore leverages the phy_port_index
▶ Introduce a netlink command set PORT_SELECT_GET / PORT_SELECT_SET

• unspec
• auto
• speed

▶ Indroduce the phy_port.preferred attribute, set to false by default
▶ Indroduce the phy_port.enabled attribute, set to true by default
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Where’s the code ?

▶ PHY enumeration series : Very basic RFC V1 sent, V2 incoming
▶ Port enumeration series : RFC ready
▶ Isolate-mode support : Still testing
▶ Multiplexing support : Still testing
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What’s next ?

▶ Timestamping :
• Leverages multi-phy support for SFP case
• Select the hardware timestamping source

▶ PoE :
• PoE controllers assign power-budgets per-port
• Leverages phy_port support

▶ DSA : There are some blind spots left, such as shared DSA port PHYs
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Questions? Suggestions? Comments?

Maxime Chevallier
maxime.chevallier@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/
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