
Netdev 0x17 - Vancouver

Multi-port and
Multi-PHY Ethernet
interfaces
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/31

 



Maxime Chevallier

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Strong open-source focus

▶ Open-source contributor
▶ Living near Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/31

 



What is this all about ?

▶ Low-level aspects of an ethernet link, down to hardware layout of a machine
▶ Most of this comes from a variety of embedded use-cases
▶ NICs here are very not-smart and all internal components are configured by the

kernel
▶ Most of the time, the Ethernet link isn’t the most important part of the product
▶ When it is, the requirements can be very specific

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/31

 



Typical embedded hardware design

SoC

CPU

Ethernet MAC

PHY

Connector

MDIO

MDI

MII

▶ MAC : Represented by a Network Interface :
struct net_device

▶ PHY : Handled by phylib : struct phy_device
through netdev->phydev

▶ Port (Connector) : Information about it in
phy_device.port and through link_modes

Variants
▶ The PHY can be integrated in the SoC or MAC
▶ The PHY might not exist at all
▶ The PHY can be handled by a firmware
▶ The Port isn’t always BaseT (twisted copper pairs)
▶ The Port can be internal (backplane ethernet)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/31

 



Userspace interaction

Configuring the link parameters and operations
▶ Through netlink or ioctl, the PHY is hidden behind the interface

• ethtool --cable-test eth0
▶ Modern PHYs can do more than transmit data
▶ plca, cable_test, link_state, ts_info, pse and statistics gathering needs PHY

access.
• Such commands rely on the net_device.phydev pointer

▶ The connector is also mostly abstracted away, and only the protocol is considered
• We don’t know much about the physical connector type

▶ The port can in theory be selected by switching between PORT_FIBRE and PORT_TP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/31

 



Netdev 0x17 - Vancouver

Multi-PHY support
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/31

 



Typical embedded hardware design, with SFP

SoC
CPU

Ethernet MAC

S
F
P

PCS
▶ We see more and more design with SFP cages in

embedded
▶ SFP needs a serialized input (SGMII, 1000BaseX, BaseK)
▶ Serialization and encoding is done through a PCS

component
▶ Some SoCs include a PCS within the Ethernet controller
▶ No PHY needed in that case

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/31

 



Media converter

SoC
CPU

Ethernet MAC

S
F
P

PHY

PCS

▶ Some SoCs don’t have a PCS and output interfaces like
RGMII

▶ Some PHYs can be used as a media converter to
leverage their internal PCS

• This not the same as a standalone PCS, which can also
sit on an MDIO bus

▶ The media converter can be seen as an Ethernet PHY
and is handled by phylib

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/31

 



SFP modules

SoC
CPU

Ethernet MAC

PHY

PCS

PHY

▶ SFP modules can embed a PHY
▶ The SFP module’s PHY is also handled by phylib
▶ It has a reference to its upstream component

• If there’s a media converter : upstream is a PHY
• If not, upstream is phylink : a MAC with a PCS
• We can have in total 2 PHYs on the link

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/31

 



Limitations

MAC

SFP

PHY Port

netdev.phydev

MAC

SFP

PHY PHY Port

netdev.phydev

▶ net_device.phydev points to the innermost PHY
▶ We can’t always perform PHY-specific operations on the SFP PHY

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/31

 



link_topology and userspace API

MAC

SFP

PHY PHY Port

netdev.link_topo

phy.phyindex = 1 phy.phyindex = 2

▶ Keep track of PHY devices and the overall topology
▶ Assign a unique identifier to each PHY, similar to ifindex
▶ This index is used for PHY-specific netlink commands
▶ Fallback to netdev.phydev if no PHY index is set
▶ Allow passing PHY index in the ethnl header.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/31

 



Kernel API

▶ link_topology lists phy_device_node that represents phys
• phy_device_node references the PHY and its parents
• It avoids maintaining the topology info within the phy_device

▶ They are attached to a netdev but can be used without
• Some PHYs aren’t attached to any net_device : DSA shared ports

▶ link_topo_add_phy, link_topo_del_phy, list_topo_get_phy
▶ Hooks into phy_attach_direct and sfp_connect_phy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/31

 



Netdev 0x17 - Vancouver

Multi-port support
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/31

 



Focus on the port

The Port designs an output of the MAC or the PHY, it can be internal of external
▶ In can be connected to a physical connector (8P8C, SFP, coax, ...)
▶ A port can only support a number of protocols, serialized or not

• Serialized interfaces have a number of lanes
▶ A port might have some status LEDs
▶ A port can also perform auxilliary functions, such as PoE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/31

 



Multi-port interfaces

SoC

CPU

Ethernet MAC

PHY

Connector

MDIO

MDI

MII

S
F
P

▶ PHYs can expose multiple physical interfaces
▶ The first that has the link, gets the link

• Sometimes called auto-media selection
▶ Supported on the Marvell 88x3310 PHY, the 88e6390X

switch, and much more
▶ Still per-driver behaviour, and few information and

control

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/31

 



Internal API

▶ Introduce phy_port to represent one port
• Internal or External
• link_modes and link_state
• LEDs ? PoE ?

▶ Sane default is for a PHY to have one port, but they can register more
▶ Ethernet drivers can also register ports
▶ An SFP cage is also a port

• Switches from external to internal when inserting a RJ45 transceiver
▶ Also use link_topology to track ports and their location
▶ link_topo_add_port, link_topo_del_port, link_topo_get_port
▶ Exposed through netlink

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/31

 



Devicetree port representation today

MAC PHY 8P8C ethernet-phy@0 {
reg = <0>;

};

MAC PHY SFP ethernet-phy@0 {
reg = <0>;
sfp = <&sfp0>;

};

MAC PHY SFP

8P8C

ethernet-phy@0 {
reg = <0>;
sfp = <&sfp0>;
// No indication about the 8P8C presence

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/31

 



phy_port in devicetree

▶ We assume PHYs have one BaseT port by default for compatibility
▶ Having an SFP phandle isn’t enough to know how many ports are physically

connected
▶ devicetree description of the ports are needed
▶ Also useful for PHYs that have multiple possible configurations

• e.g. Marvell’s 88e1543 can either be a Quad-PHY or a Dual dual-port PHY
• Also avoids vendor-specific media-converter settings

▶ It can be also used for LED description and PoE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/31

 



Devicetree example - WIP

example.dts

ethernet-phy@0 {
...

mdi {
port@0 {

media = "10baseT", "100baseT", "1000baseT";
};

port@1 {
sfp = <&sfp>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/31

 



Netdev 0x17 - Vancouver

Multiplexing support
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/31

 



Multi-PHY Link, for redundancy

SoC

CPU

Ethernet MAC

PHY

Connector

MDI

MII

PHY

Connector

▶ There are other use-cases where multiple PHYs are on
the link

▶ Multiple PHYs connected on the same MII
• Non standard but found in the wild
• The Kernel is in charge of managing PHYs
• Isolate mode or Poweroff

▶ Achieve link redundancy
▶ Use multiple link standards

• BaseT1 + BaseT4
▶ We model a Software MUX

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/31

 



Hardware Muxing

SoC
CPU

Ethernet MAC

PHY

Connector

MDI

MII
PHY

MUX

Connector

▶ Internal PHY
▶ Internal Mux
▶ External PHY

SoC

CPU

Ethernet MAC

PHY

Connector

MDI

MII

S
F
P

mux ▶ Internal Mux
▶ Control via

• Registers
• GPIO

▶ External Lanes
▶ External MII

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/31

 



Userspace API design

SoC
CPU

Ethernet MAC

PHY

Connector

MDI

MII
PHY

MUX

Connector

SoC

CPU

Ethernet MAC

PHY

Connector

MDI

MII

PHY

Connector

SoC

CPU

Ethernet MAC

PHY

Connector

MDIO

MDI

MII

S
F
P

PHY

8P8C

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/31

 



Userspace API design

SoC
CPU

Ethernet MAC

PHY

Connector

MDI

MII
PHY

MUX

Connector

SoC

CPU

Ethernet MAC

PHY

Connector

MDI

MII

PHY

Connector

SoC

CPU

Ethernet MAC

PHY

Connector

MDIO

MDI

MII

S
F
P

PHY

8P8C

User cares about which front-facing-ports are on a given interface
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/31

 



Port Multiplexer

▶ The port multiplexer has a reference to all ports attached to an interface
▶ It’s the component userspace interacts with
▶ Implements the logic for the port switchover

• First that has link
Use PHY’s Auto media detection

• Preferred port
• Userspace only (no automatic port enabling)
• Can be extended (speed based...)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/31

 



Internal APIs

▶ PHYs that have multiple ports implement muxing ops
▶ We need to make sure the PHY configuration is coherent

• We can’t enable TS offload on one PHY and not on the other
• However, cable-testing is fine

▶ We also need to ensure link configuration coherency
• Autoneg or speed settings can differ between ports
• Per-port configuration ?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/31

 



Userspace API

▶ From userspace, what’s important is mostly which port is selected
▶ The API therefore leverages the phy_port_index
▶ Introduce a netlink command set PORT_SELECT_GET / PORT_SELECT_SET

• unspec
• auto
• speed

▶ Indroduce the phy_port.preferred attribute, set to false by default
▶ Indroduce the phy_port.enabled attribute, set to true by default

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/31

 



Netdev 0x17 - Vancouver

Upstream Status
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/31

 



Where’s the code ?

▶ PHY enumeration series : Very basic RFC V1 sent, V2 incoming
▶ Port enumeration series : RFC ready
▶ Isolate-mode support : Still testing
▶ Multiplexing support : Still testing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/31

 



What’s next ?

▶ Timestamping :
• Leverages multi-phy support for SFP case
• Select the hardware timestamping source

▶ PoE :
• PoE controllers assign power-budgets per-port
• Leverages phy_port support

▶ DSA : There are some blind spots left, such as shared DSA port PHYs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/31

 



Questions? Suggestions? Comments?

Maxime Chevallier
maxime.chevallier@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/31

https://bootlin.com/pub/conferences/

	Multi-port and Multi-PHY Ethernet interfaces
	Multi-PHY support
	Multi-port support
	Multiplexing support
	Upstream Status

