Generic 128-bit Math API

Marta Plantykow, Milena Olech, Alex Lobakin

Netdev 0x16

October 24, 2022

Agenda

Introduction
128-bit based applications
Mathematical background
128-bit multiplication and division
Introduced API
Performance
Test results
Future work
Summary

Introduction

At this moment no 128-bit computer architecture exists. However, 128-bit operations exists for different purposes.

When such operations exist - CPU performs them natively
However, not every architecture does so and we need a fallback

Introduction

In this work, we propose a generic 128b Math API for the Linux kernel ready to be used in Precision Time Protocol (PTP) implementation.

128-bit-based variables allow performing calculations on large values with greater accuracy without the need for estimates.

128-bit based applications

- Hardware performance accelerators - Streaming SIMD Extensions (SSE) - registers and instructions added to Intel (CPU) to improve video encoding and decoding.
- Graphic accelerators - In some implementations, it has a pathway 128 bits wide between its onboard processor and memory.
- Cryptography - The Advanced Encryption Standard (AES) algorithm can use cryptography keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits.
- MD5 hashes produce 128-bit results
- ZFS is 128-bit filesystem
- IPv6 operates on 128-bit range of addresses

128-bit based applications

- Precision Time Protocol (IEEE 1588)
- Defines a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems
- Supports system-wide synchronization in the sub-microsecond range putting minimal requirements on network and local computing resources
- The clocks within a system are organized into a leader-follower hierarchy, in which the clock located at the top of the hierarchy determines the reference time for the entire system
- The protocol applies to both high-end and low-end devices

128-bit based applications

Mathematical background

- If the processor supports 128-bit-based native operations, no manual implementation is required
- Some architectures do not support 128-bit operations
- Most of them are 32-bit based, so it is crucial to implement fallback functions using 32-bit based mathematics
- 128-bit comparison, addition, and subtraction do not require complex algorithms

Mathematical background

128-bit processors are used for addressing up to 2^{128} (over 3.40×10^{38}) bytes.

This number is greater than the total data captured, created, or replicated on Earth as of 2018 which was approximated to be around 33 zettabytes $\left(33 \times 10^{21}\right)$.

Mathematical background

- Unsigned integer

From 0 to
$340,282,366,920,938,463,463,374,607,431,768,211,455$

- Signed integer

From
$-170,141,183,460,469,231,731,687,303,715,884,105,728$
to
$170,141,183,460,469,231,731,687,303,715,884,105,727$

128-bit multiplication and division

In case of division and multiplication, the following notation has been used [Knuth, 98]:

$$
\begin{gather*}
\left(\ldots a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2} \ldots\right)_{b}= \tag{1}\\
\ldots+a_{3} b^{3}+a_{2} b^{2}+a_{1} b^{1}+a_{0}+a_{-1} b^{-1}+a_{-2} b^{-2}+\ldots \tag{2}
\end{gather*}
$$

The most straightforward generalizations of the decimal number system are received when we take b to be an integer greater than one and when $a^{\prime} s$ are required to be integers in the range of $0 \leq a_{k}<b$.

This gives the standard binary $(b=2)$, ternary $(b=3)$, quaternary ($b=4$) number systems.

128-bit multiplication and division

$$
\begin{gather*}
\left(\ldots a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2} \ldots\right)_{b}= \tag{3}\\
\ldots+a_{3} b^{3}+a_{2} b^{2}+a_{1} b^{1}+a_{0}+a_{-1} b^{-1}+a_{-2} b^{-2}+\ldots \tag{4}
\end{gather*}
$$

- The dot between a_{0} and a_{-1} is called the radix point
- The a's in equation 3 are called digit of representation
- The rightmost digit is called least significant digit
- The leftmost digit is called most significant digit

128-bit multiplication and division

Let's assume that we have two numbers $u=\left(u_{m+n-1} \ldots u_{1} u_{0}\right)_{b}$ and $v=\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b}$.
The most crucial part is understanding of radix- b notation where b is the computer word size.

If we have an integer that fills 10 words on the computer whose word size is $10{ }^{10}$ we receive:

1. 100 decimal digit
2. 10 -place number to the base 10^{10}

Multiplication Algorithm

Given nonnegative integers $\left(u_{m-1} \ldots u_{1} u_{0}\right)_{b}$ and $\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b}$, this algorithm forms their radix-b product $\left(w_{m+n-1} \ldots w_{1} w_{0}\right)_{b}$.

1. Initialize

Set $w_{m-1}, w_{m-2}, \ldots, w_{0}$ all to 0 . Set $j=0$
2. Zero multiplier?

If $v_{j}=0$, set $w_{j+m}=0$ and go to step 6 .
3. Initialize i

Set $i=0, k=0$
4. Multiply and add

Set $t=u_{i} \times v_{j}+w_{i+j}+k$; then set $w_{j+k}=t \bmod b$ and $k=\left\lfloor\frac{t}{b}\right\rfloor$
5. Loop on i

Increase i by one. Now, if $i<m$, go back to step 4;
otherwise, set $w_{j+m}=k$
6. Loop on j

Increase j by one. Now, if $j<n$, go back to step 2 ;, the algorithm terminates.

Division Algorithm

The difference between the algorithm and "pencil and paper method" is that this method creates partial products of $\left(u_{m-1} \ldots u_{1} u_{0}\right)_{b} \times v_{j}$ for $0 \leq j<n$ and adds these products at the end with appropriate scale factors.

Introduced algorithm does addition and multiplication simultaneously.

Division Algorithm

Given nonnegative integers $u=\left(u_{m+n-1} \ldots u_{1} u_{0}\right)_{b}$ and
$v=\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b}$, where $v_{n-1} \neq 0$ and $n>0$, we form the radix-b quotient $\left\lfloor\frac{u}{v}\right\rfloor=\left(q_{m} q_{m-1} \cdots q_{0}\right)_{b}$ and the remainder $u \bmod v=$ $\left(r_{n-1} \ldots r_{1} r_{0}\right)_{b}$.

1. Normalize

Set $d=\left\lfloor\frac{b-1}{v_{n-1}}\right\rfloor$. Then set $\left(u_{m+n} u_{m+n-1} \ldots u_{1} u_{0}\right)_{b}$ equal to
$\left(u_{m+n-1} \cdots u_{1} u_{0}\right)_{b}$ times d. Similarly, set $\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b}$ equal to $\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b}$ times d.
2. Initialize j

Set $j=m$.
3. Calculate \widehat{q}

Set $\widehat{q}=\left\lfloor\frac{\left(u_{j+n} b+u_{j+n-1}\right)}{v_{n}-1}\right\rfloor$ and let \widehat{r} be the remainder $\left(u_{j+n} b+u_{j+n-1}\right) \bmod v_{n-1}$. Not test if $\widehat{q}=b$ or $\widehat{q} v_{n-2}>b \widehat{r}+u_{j+n-2}$. If so, decrease \widehat{q} by 1 , increase \widehat{r} by v_{n-1}, and repeat this test if $\widehat{r}<b$.

Division Algorithm

4. Multiply and subtract

Replace $\left(u_{j+n} u_{j+n-1} \ldots u_{j}\right)_{b}$ by

$$
\begin{equation*}
\left(u_{j+n} u_{j+n-1} \ldots u_{j}\right)_{b}-\widehat{q}\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b} \tag{5}
\end{equation*}
$$

This computation consists of a simple multiplication by a one-place number combined with a subtraction. The digits $\left(u_{j+n}, u_{j+n-1}, \ldots, u_{j}\right)$ should be kept positive. If the result of this step is negative, $\left(u_{n+j} u_{j+n-1} \cdots u_{j}\right)_{b}$ should be left as the actual value plus b^{n+1}, namely as the $b^{\prime} s$ complement of the actual value, and borrow to the left should be remembered.

Division Algorithm

5. Test remainder

Set $q_{j}=\widehat{q}$. If the result of step 4 was negative, go to step 6 . Otherwise, go on to step 7.
6. Add back

Decrease q_{j} by 1 , and add $\left(v_{n-1} \ldots v_{1} v_{0}\right)_{b}$ to
$\left(u_{n+j} u_{j+n-1} \ldots u_{j+1} u_{j}\right)_{b}$
7. Loop on j

Decrease j by one. Now if $j \geq 0$, go back to 3 .
8. Unnormalize

Now $\left(q_{m} \ldots q_{1} q_{0}\right)_{b}$ is the desired quotient, and the desired remainder may be obtained by dividing $\left(u_{n-1} \ldots u_{1} u_{0}\right)_{b}$ by d.

Introduced API

The proposed API defines a structure that represents unsigned 128bit-based variables.

Introduced API

Introduced functions are divided into following groups:

- Comparison
- Addition
- Subtraction
- Multiplication
- Divison

Introduced API

Division of unsigned 128bit dividend by 128bit divisor

```
u64 dividend_high = 0x6767676721212121;
u64 dividend_low = 0x1243252265375421;
u64 divisor_high = 0x1111143454354354;
u64 divisor_low = 0x11111111114325342;
u128 remainder;
u128 result;
```

result $=$ div_u128_u128(u128_store(dividend_high, dividend_low),
u128_store(divisor_high, divisor_low),
\&remainder);

Performance Test

To measure the performance of introduced API, several tests were performed.

Following functions were chosen to be examined:

1. A function that operates on more than 64 -bit values ice_ptp_adjfine from the Intel ice driver of the 5.19.5 Linux kernel (algorithm1)
2. The same function (ice_ptp_adjfine) from the 6.0 Release Candidate (algorithm2)
3. The native 128 -bit function directly related to the PTP (algorithm3)

Performance Test

Test procedure:

- Each operation was repeated 10000 times
- Before and after each operation, the timestamp was taken
$>$ Based on the time difference, expressed in nanoseconds, operation time was calculated
> Measurements were taken with and without the new API usage
- Each test was repeated ten times to provide stability and predictability
- To reduce the possible noise, interrupts were disabled while testing
- Average values were calculated and compared

Test results

Results for algorithm1 with and without using 128bit API for 10000 iterations

	With 128	Without 128
Time[ns]	2910762	3479241
	2889556	3458588
	2898945	3456600
	2885530	3464868
	2885966	3456716
	2884493	3466790
	2888336	3468363
	2904135	3493585
	2886087	3457316
	2884718	3462869
Average[ns]	2891852,8	$\mathbf{3 4 6 6 4 1 3 , 6}$
	Difference	$\mathbf{5 7 4 5 6 0 , 8}$

Test results

Results for algorithm2 with and without using 128bit API for 10000 iterations

	With 128	Without 128
Time[ns]	2910762	2884022
	2889556	2886298
	2898945	2905804
	2885530	2884171
	2885966	2900811
	2884493	2905661
	2888336	2897499
	2904135	2887431
	2886087	2910105
	2884718	2885615
Average[ns]	$\mathbf{2 8 9 1 8 5 2 , 8}$	$\mathbf{2 8 9 4 7 4 1 , 7}$
	Difference	$\mathbf{2 8 8 8 , 9}$

Test results

Results for algorithm3 with and without using 128bit API for 10000 iterations

	Native ops	Fallbacks
Time[ns]	2893146	2910706
	2894902	2882109
	2903383	2906288
	2891043	2899066
	2890052	2908561
	2885330	2900073
	2888230	2886179
	2884972	2887796
	2905913	2887784
	2888076	2891369
Average[ns]	2892504,7	$\mathbf{2 8 9 5 9 9 3 , 1}$
	Difference	$\mathbf{3 4 8 8 , 4}$

Test results

* 128-bit API delivers better results in all tested scenarios.
* Although the primary goal of the API introduction was not to improve the performance, but to introduce generic API, this change did not negatively affect performance.
* Operation time was reduced by up to $547,5 \mu$ s per 10,000 operations.

Future work

1. The code will be submitted to the Linux kernel Mailing Lists.
2. Later works may include tree-wide conversions and switching more drivers and subsystems (crypto etc.) to this solution.

Summary

- Proposed solution is an easy-to-use kernel API for 128-bit operations
- For addition and subtraction basic math operations are used
- Multiplication and division require dedicated algorithms
- Tests prove that introduced API does not degrade analyzed functions' performance
- The major benefit of introduced API is improvement of the calculations precision

References

E Donald E. Knuth (1998)
The art of computer programming Stanford University

Q\&A

