
Networking in Containers and Container Clusters

Victor Marmol, Rohit Jnagal, and Tim Hockin

Google, Inc.
Mountain View, CA USA

{vmarmol,jnagal,thockin}@google.com

Abstract
Containers are becoming a popular way of deploying applications
quickly, cheaply, and reliably. As with the early days of virtual
machines, a variety of container networking configurations have
been proposed to deal with the issues of discovery, flexibility and
performance. Using Docker we present available networking
configurations along with many of the popular networking setups,
their uses, and their problems today. A second aspect we will
explore are containers in clusters, as these systems rely even more
heavily on the network. We use Kubernetes as an example of this
type of system. We present the network setups of the core
components of Kubernetes: pods and services.

Keywords
containers, Kubernetes, Docker, libcontainer, cgroups,
namespaces, ipvlan, pods, microservices, container cluster,
container manager.

 Introduction
Containers, as a user-space abstraction, have been around
for many years. At Google, our earliest uses of containers
started around 2004 with basic chroot and ulimit setups
and enhanced in 2006 with the introduction of cgroups [1].
Docker’s [2] release in 2013 brought an ease of use to
containers that have helped them to become ubiquitous.
Developers targeting all kinds of applications, from large
distributed systems to embedded networking components,
are turning to containers (and Docker containers) to build,
run, and deploy these applications. A common trend
amongst all these varied uses is the heavy emphasis on
network-based communications. More and more we see
microservice architectures as the prefered way to use
containers. This has reached a point where almost all
container-based applications we see today rely on the
network to perform their roles. The networking
configurations used to achieve this communication are
almost as varied as the uses themselves. This paper is a
case study of networking in containers and container-based
clusters today. Specifically we will explore the most
popular networking setups for Docker containers. We will
also explore the networking setups used in container-based
clusters by taking a deeper look at the networking aspects
of Kubernetes, Google’s container cluster manager [3].

In this paper, when we refer to a container we are
referring to a group of processes that are isolated via a set
of Linux namespaces, cgroups, and capabilities.

History
The first container versions at Google were aimed at
providing resource isolation while keeping high utilization.
As such, the only networking goals for these containers
were to provide a discoverable address and not lose
performance. Port allocation, the scheduling and allotment
of ports as a first-class resource, solved these problems
nicely for some time. Since all internal Google applications
were trusted, there was no need to isolate the applications’
network views from each other, or protect the host from
application containers. Outside Google there was a need
for more isolated containers. LXC came up with multiple
options to configure networking - starting with virtual
Ethernet interfaces and over time covering VLAN,
MACVLAN, and exposing dedicated physical devices [4].
These configurations provide a completely isolated
networking view for apps running in containers. For
clusters, the main networking goal is discovery and
addressing for replicated containers as they move around
through restarts, updates, and migrations.

Namespaces
Namespaces, as the name implies, restrict a particular
kernel resource dimension to its own isolated view. The
current set of supported namespaces are pid (process
views), mnt (mounts), ipc (shared memory, message
queues etc), UTS (host and domain names), user (uids and
gids), and net (network view). Each net namespace gets its
own isolated network interfaces, loopback device, routing
table, iptable chains and rules. By assigning IPs to virtual
interfaces within a container, multiple apps in different
containers can, for example, all have a port 80 exposed.

Networking in Containers
The networking aspects of containers primarily center
around the use of two of the Linux kernel’s namespaces:
network and UTS. These namespaces allow a container to
present itself to the world and be routed to as if it were a
host.

Docker is comprised of various subcomponents that
manage container runtime, filesystem layers, and
application images. The networking aspect is handled in
container runtime setup. Docker’s containers are, by
default, created by libcontainer, a native implementation of
Linux container runtime[5]. It is primarily written in Go,

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

with operations outside of the Go runtime written in C.
Libcontainer provides a very low level API, exposing
nearly all container-related kernel knobs. This makes
libcontainer very powerful, but also difficult to configure at
times. In this case study we will use Docker’s use of
libcontainer to showcase container network configurations.

Configurations
Libcontainer exposes its container configuration via a
single JSON configuration file [6]. It allows the
configuration of the container’s hostname, routes, and
networks. Hostname is directly used to set up UTS
namespace. The routes configuration passes in any route
table entries we want to install inside the namespace.
Network configuration allows specifying how the container
is exposed to the outside world. It allows the user to
configure the MAC address, IP (both IPv4 and IPv6)
address, and default gateway assigned to the container. It
also allows the configuration of the MTU and queue length
of the network device.

Docker containers can by default reach the outside
world, but the outside world cannot talk to the container.
To expose container endpoints, Docker requires explicit
specification of what ports to expose. A container can
either expose all ports, or specific ones. Container ports
can be bound to specific host ports or docker can pick
dynamic ports from a predefined range. All port mappings
are managed through iptables rules. Docker sets up a
MASQUERADE rule for traffic from docker containers,
and rules to drop packets between containers unless
specifically whitelisted (Figure 1).

$ sudo iptables -t nat -L -n
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0

Chain DOCKER (2 references)
target prot opt source destination
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0
tcp dpt:8080 to:172.17.2.13:8080

Figure 1. MASQUERADE rules made by Docker on a host.

Strategies
Libcontainer supports the following network
configurations.
loopback Creating a new network namespace always
creates a loopback device. This strategy is primarily used
to enable the interface and perform any specific
configuration or for containers that don’t require external
networking.
veth veth (virtual ethernet) creates a pair of network
interfaces that act like a pipe. The usual setup involves
creating a veth pair with one of the peer interfaces kept in
the host network namespace and the other added to the
container namespace. The interface on the host network
namespace is added to a network bridge. In the Docker
world, most of the veth setup is done by the Docker

daemon. Libcontainer just expects the network pair to be
already set up and it coordinates adding one of the
interfaces to a newly-created container namespace (Figure
2).

On host
$ ip address list

...

3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460

qdisc noqueue state UP group default

 link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff

 valid_lft forever preferred_lft forever

1037: veth694884b: <BROADCAST,UP,LOWER_UP> mtu 1460

qdisc pfifo_fast master docker0 state UP group default

qlen 1000

 link/ether 12:0f:8b:dc:27:ac brd ff:ff:ff:ff:ff:ff

Inside container
$ ip address list eth0

1036: eth0: <BROADCAST,UP,LOWER_UP> mtu 1460 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 02:42:ac:11:02:08 brd ff:ff:ff:ff:ff:ff

 valid_lft forever preferred_lft forever

Figure 2. Example of a veth container setup in Docker inside and
outside the container. Container’s eth0 and host’s veth694884b
interfaces form a veth pair linked to the docker bridge docker0.

In practice, use of separate bridges can allow creating
virtual networks between containers.

In addition to setting up veth and bridge interfaces,
containers are linked together and with the wider world
through iptable rules. This strategy with a network bridge
is found to be significantly less performant than using the
host network interface directly, since it requires
forwarding/routing which is not penalty free.
netns The netns strategy allows multiple containers to
share the same network namespace and have access to the
same network devices. A new container can be configured
by passing in the name of the container that has loopback
and/or veth configured. This option can also be used to
directly expose physical host networking to a container by
sharing the host network namespace.
MACVLAN/VLAN Libcontainer supports creation of
VLAN and MACVLAN interfaces, but these are not used
directly by Docker today. Instead tools like pipework [7]
can be used to set up complex networking configurations.
This strategy has the best performance of the options
mentioned here for environments where VLANs can be
used. Libcontainer does not yet support the recently
released ipVLAN which works similarly to MACVLAN,
but switching using L3 [8].

Networking in Container Clusters
Container clusters are compute clusters where the primary
unit of deployment is a container. In a container cluster, all
jobs are run in containers and that becomes the primary
abstraction exposed to jobs (as opposed to a machine or a
virtual machine). These types of clusters have risen in

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

popularity as containers provide a lightweight and flexible
way to isolate and deploy applications. They’re also
thought to be more efficient than the alternatives and thus
provide higher overall machine utilization.

Kubernetes is an open-source cluster container manager
released by Google and based on over 10 years of running
container clusters internally. It schedules, deploys, and
manages groups of containers to clusters of machines.
Systems like Kubernetes are designed to provide all the
primitives necessary for microservice architectures, and for
these the network is vital. Applications perform nearly all
their functions through the network. Discovery,
communication, and synchronization are all done through
the network. This makes the network setup of any
Kubernetes cluster one of the most important aspects.

Kubernetes provides a set of key abstractions users can
use to architect their applications. We will examine two of
those abstractions, pods and services, and how their
networks are configured.

Pod
A pod, like a pod of whales, is a group of tightly coupled
containers [9]. These containers are always deployed side
by side on the same machine. In a pod, all containers share
resources and share fate. All containers in a pod are placed
inside the same network namespace such that they can talk
to each other via localhost and share the port space. The
pod is also assigned its own routable IP address. In this
way pods are exposed outside of the Kubernetes node, are
uniquely addressable, and can bind to any network port. To
the external world, a pod looks like a virtual machine.

Kubernetes pods are comprised of groups of Docker
containers. We create a “POD” infrastructure container
with a small no-op binary. The other containers in the pod
are then created, joining the existing network namespace of
the POD container. Having an infrastructure pod helps in
persisting network setup as individual containers in the pod
are added, removed, or restarted. Today, we use the veth
bridge networking strategy provided by Docker and assign
it the pod’s IP address. While the performance is tolerable
for now, we would like to replace veth with an ipVLAN
setup instead. Kubernetes is unable to use MACVLAN
since most software defined networks (including Google
Compute Engine’s) don’t support this option.

An alternate to the IP per pod approach is dynamic port
allocation and mapping. We’ve found that systems
choosing the latter approach are significantly more
complex, permeate ports throughout all of their
configurations, are plagued by port conflicts, and can
suffer from port exhaustion. Ports become a schedulable
resource which brings a tremendous amount of complexity.
Applications must be able to change what ports they bind
to at runtime and communicate their port(s) to their users
and the service-discovery infrastructure. No longer can
applications communicate with an IP and a pre-defined
port, they now must know the IP and the associated port.
We find that the complexity of assigning a routable IP to

each pod to be preferable over making ports a resource
throughout Kubernetes.

Services
In Kubernetes pods are considered ephemeral: they can
come and go. Machine maintenance can, for example,
cause them to be replaced with different instances that
serve the same purpose. This makes it inconvenient and
incorrect to address a pod by its IP address. This is where
services come in. A service is an abstraction that allows the
stable addressing of a group of pods (sometimes called a
microservice) [10]. It functions very similarly to a group of
pods placed in front of a load balancer. A service has an IP
that is guaranteed to be stable. Requests to that IP are then
load balanced to active pods that are behind the service. As
pods come and go, the service updates the routes it can
provide to incoming requests.

Services are implemented using a combination of
iptables routes and a user space service proxy running
on all Kubernetes nodes. When a pod on a node makes a
request to a service through the latter's IP address the
iptables rules re-route the request to the service proxy
on the node. The service proxy keeps an updated list of all
the pods that can answer requests for this particular
service. The proxy watches the shared cluster state for
changes in service membership and can enact the change
quickly. Given the list of member pods, the service proxy
does simple client-side round robin load balancing across
the member pods. This service proxy allows applications to
function unmodified in a Kubernetes cluster. If the
overhead of the service proxy is a concern, applications
can perform the membership queries and routing
themselves, just as the proxy does. We have not noticed a
significant performance impact from the use of the service
proxy. We have work underway to replace the service
proxy completely with iptables routes in order to
remove the need for the proxy.

Services in Kubernetes tend to not be exposed to the
outside world since most microservices simply talk to other
microservices in the cluster. Public-facing services are
extremely important as well since some microservice must
eventually provide a service to the outside world.
Unfortunately, public-facing services are not completely
handled today in Kubernetes since there is no external
proxy to act in a similar manner to the on-node service
proxy. The current implementation of public services have
a load balancer targeting any node in a Kubernetes cluster.
Requests that arrive on this node are then rerouted by the
service proxy to the correct pod answering requests for the
service. This is an active area of work where a more
complete solution is still being designed.

An alternative to the Kubernetes service abstraction is to
use DNS to redirect to pods. The reason this approach was
not chosen was due to the inconsistent handling of DNS
lookups in DNS client libraries. Many clients do not
respect TTLs, do not round robin members, or do not re-do
lookups when membership changes, and we felt that DNS
clients would not update membership quickly enough.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Discovery
Services are the key to all communication within a
Kubernetes cluster. Discovering the IP address of those
services is done in two ways. The first approach is through
environment variables exposed in the pods. Each pod in the
cluster has a set of environment variables exposed with the
IP addresses of each service. Of course, this does not scale
well with larger clusters. More recently service discovery
was delegated to an internal cluster DNS service. Each
service gets a DNS address in the cluster that resolves to
the service IP. This was found not to have the DNS
problems mentioned before since the service IP address is
unique and stable.

Configurations
We’ll briefly describe how the Kubernetes network is
configured in some of the more popular network strategies.
Andromeda Andromeda is the software defined network
underlying Google Compute Engine [11]. Andromeda
allows us quite a bit of flexibility in programing the
underlying network fabric. We allocate a subnet of 256
internal 10-dot IPv4 IPs on each node to be used for pods
and ask the fabric to route this /24 range to the specific
node. Service IP addresses are allocated from a different
part of the 10-dot pool. Pod to pod communication uses the
internal 10-dot IPs, but communication with the internet
gets NAT’ed through the node as those have internet
routable IPs.
Flannel Flannel is an overlay network developed by
CoreOS [12]. Flannel uses universal TUN/TAP and UDP to
encapsulate IP packets. It creates a virtual network very
similar to the one described above for Andromeda by
allocating a subnet to each host for use by its pods.
Others Using a virtual bridge on a node and connecting
them across is being used to deploy more complex
topologies. OVS on Kubernetes is enabled with such a
setup [13]. Weave uses a similar technique to build an
overlay network [14].

Resource Management
At the cluster level, networking resources can be managed
by detecting network capacity at each node and allocating
it to running containers like any other resource. However,
a practical resource model for inter-cluster networking
requires detailed topology information to be really
effective. In most setups, network bandwidth management
responsibility is shared between the fabric provider and the
cluster manager. Given a topology model, containers can
be scheduled to (re-)balance the networking load. In
addition, when hotspots are identified, a node-local action
can be initiated to limit bandwidth-hogging containers.

Future Work
Kubernetes would like to move to virtual migratable IPs so
that container migration becomes possible within the

cluster. There is also work underway to introduce “real”
load balancing in the service proxy. This will allow the
load balancer to balance on things like the utilization and
health of pods behind the service.

Acknowledgements
The authors would like to acknowledge and thank the
entire Kubernetes, Docker, and libcontainer teams,
contributors, and communities. Their work is being
highlighted and described here.

We would also like to thank John Wilkes and Mahesh
Bandewar for their review and guidance on this paper.

References
1. Victor Marmol, Rohit Jnagal, “Containers @ Google”,
Sunnyvale, CA, accessed February 6, 2014,
http://www.slideshare.net/vmarmol/containers-google
2. Docker, “Docker”, accessed February 6, 2014,
https://github.com/docker/docker
3. Kubernetes, “Kubernetes”, accessed February 6, 2014,
https://github.com/googlecloudplatform/kubernetes
4. Daniel Lezcano, “lxc.container.conf”, accessed February
6, 2014, http://man7.org/linux/man-
pages/man5/lxc.container.conf.5.html
5. Libcontainer, “Libcontainer”, accessed February 6,
2014, https://github.com/docker/libcontainer
6. Libcontainer, “Libcontainer Config”, accessed February
6, 2014,
https://github.com/docker/libcontainer/blob/master/config.
go
7. Jérôme Petazzoni, “Pipework”, accessed February 6,
2014, https://github.com/jpetazzo/pipework
8. Mahesh Bandewar, “ipvlan: Initial check-in of the
IPVLAN driver.”, accessed February 6, 2014,
http://lwn.net/Articles/620087/
9. Kubernetes, “Pods”, accessed February 6, 2014,
https://github.com/GoogleCloudPlatform/kubernetes/blob/
master/docs/pods.md
10. Kubernetes, “Services”, accessed February 6, 2014,
https://github.com/GoogleCloudPlatform/kubernetes/blob/
master/docs/services.md
11. Amin Vahdat, “Enter the Andromeda zone - Google
Cloud Platform’s latest networking stack”, accessed
February 6, 2014,
http://googlecloudplatform.blogspot.com/2014/04/enter-
andromeda-zone-google-cloud-platforms-latest-
networking-stack.html
12. CoreOS, “Flannel”, accessed February 6, 2014,
https://github.com/coreos/flannel
13. Kubernetes, “OVS Networking”, accessed February 6,
2014,
https://github.com/GoogleCloudPlatform/kubernetes/blob/
master/docs/ovs-networking.md
14. Zettio, “Weave”, accessed February 6, 2014,
ttps://github.com/zettio/weave

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

