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Abstract
Containers are becoming a popular way of deploying applications
quickly, cheaply, and reliably. As with the early days of virtual
machines, a variety of container networking configurations have
been proposed to deal with the issues of discovery, flexibility and
performance.  Using  Docker  we  present  available  networking
configurations along with many of the popular networking setups,
their  uses,  and their  problems today. A second aspect  we  will
explore are containers in clusters, as these systems rely even more
heavily on the network. We use Kubernetes as an example of this
type  of  system.  We  present  the  network  setups  of  the  core
components of Kubernetes: pods and services.
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 Introduction
Containers, as a user-space abstraction, have been around
for many years. At Google, our earliest uses of containers
started  around 2004 with  basic  chroot  and  ulimit  setups
and enhanced in 2006 with the introduction of cgroups [1].
Docker’s [2]  release  in  2013 brought  an  ease  of  use  to
containers  that  have  helped  them to  become ubiquitous.
Developers targeting all kinds of applications, from large
distributed systems to embedded networking components,
are turning to containers (and Docker containers) to build,
run,  and  deploy  these  applications.  A  common  trend
amongst  all  these  varied  uses  is  the  heavy emphasis  on
network-based  communications.  More  and  more  we  see
microservice  architectures  as  the  prefered  way  to  use
containers.  This  has  reached  a  point  where  almost  all
container-based  applications  we  see  today  rely  on  the
network  to  perform  their  roles.  The  networking
configurations  used  to  achieve  this  communication  are
almost as varied as the uses themselves.  This paper is  a
case study of networking in containers and container-based
clusters  today.  Specifically  we  will  explore  the  most
popular networking setups for Docker containers. We will
also explore the networking setups used in container-based
clusters by taking a deeper look at the networking aspects
of Kubernetes, Google’s container cluster manager [3].

In  this  paper,  when  we  refer  to  a  container  we  are
referring to a group of processes that are isolated via a set
of Linux namespaces, cgroups, and capabilities.

History
The  first  container  versions  at  Google  were  aimed  at
providing resource isolation while keeping high utilization.
As such,  the only networking goals  for  these  containers
were  to  provide  a  discoverable  address  and  not  lose
performance. Port allocation, the scheduling and allotment
of  ports  as  a  first-class  resource,  solved  these  problems
nicely for some time. Since all internal Google applications
were trusted, there was no need to isolate the applications’
network views from each other, or protect  the host from
application containers.  Outside Google there was a need
for more isolated containers. LXC came up with multiple
options  to  configure  networking  -  starting  with  virtual
Ethernet  interfaces  and  over  time  covering  VLAN,
MACVLAN, and exposing dedicated physical devices [4].
These  configurations  provide  a  completely  isolated
networking  view  for  apps  running  in  containers.  For
clusters,  the  main  networking  goal  is  discovery  and
addressing for replicated containers as they move around
through restarts, updates, and migrations.

Namespaces
Namespaces,  as  the  name  implies,  restrict  a  particular
kernel  resource  dimension to its  own isolated  view. The
current  set  of  supported  namespaces  are  pid  (process
views),  mnt  (mounts),  ipc  (shared  memory,  message
queues etc), UTS (host and domain names), user (uids and
gids), and net (network view). Each net namespace gets its
own isolated network interfaces, loopback device, routing
table, iptable chains and rules. By assigning IPs to virtual
interfaces  within  a  container,  multiple  apps  in  different
containers can, for example, all have a port 80 exposed.

Networking in Containers
The  networking  aspects  of  containers  primarily  center
around the use of two of the Linux kernel’s namespaces:
network and UTS. These namespaces allow a container to
present itself to the world and be routed to as if it were a
host.

Docker  is  comprised  of  various  subcomponents  that
manage  container  runtime,  filesystem  layers,  and
application images.  The networking aspect  is  handled in
container  runtime  setup.  Docker’s  containers  are,  by
default, created by libcontainer, a native implementation of
Linux container runtime[5]. It is primarily written in Go,
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with operations outside of  the Go runtime written in  C.
Libcontainer  provides  a  very  low  level  API,  exposing
nearly  all  container-related  kernel  knobs.  This  makes
libcontainer very powerful, but also difficult to configure at
times.  In  this  case  study  we  will  use  Docker’s  use  of
libcontainer to showcase container network configurations.

Configurations
Libcontainer  exposes  its  container  configuration  via  a
single  JSON  configuration  file  [6].  It  allows  the
configuration  of  the  container’s  hostname,  routes,  and
networks.  Hostname  is  directly  used  to  set  up  UTS
namespace.  The routes configuration passes in any route
table  entries  we  want  to  install  inside  the  namespace.
Network configuration allows specifying how the container
is  exposed  to  the  outside  world.  It  allows  the  user  to
configure  the  MAC  address,  IP  (both  IPv4  and  IPv6)
address, and default gateway assigned to the container. It
also allows the configuration of the MTU and queue length
of the network device.

Docker  containers  can  by  default  reach  the  outside
world, but the outside world cannot talk to the container.
To expose  container  endpoints,  Docker  requires  explicit
specification  of  what  ports  to  expose.  A container  can
either  expose  all  ports,  or specific  ones.  Container  ports
can  be  bound to  specific  host  ports  or  docker  can  pick
dynamic ports from a predefined range. All port mappings
are managed through iptables rules.  Docker sets up a
MASQUERADE rule  for  traffic  from docker  containers,
and  rules  to  drop  packets  between  containers  unless
specifically whitelisted (Figure 1).

$ sudo iptables -t nat -L -n
...
Chain POSTROUTING (policy ACCEPT)
target     prot opt source             destination   
MASQUERADE  all  --  172.17.0.0/16     0.0.0.0/0      

Chain DOCKER (2 references)
target     prot opt source             destination   
DNAT       tcp  --  0.0.0.0/0          0.0.0.0/0
tcp dpt:8080 to:172.17.2.13:8080

Figure 1. MASQUERADE rules made by Docker on a host.

Strategies
Libcontainer  supports  the  following  network
configurations.
loopback Creating  a  new  network  namespace  always
creates a loopback device. This strategy is primarily used
to  enable  the  interface  and  perform  any  specific
configuration or for containers that don’t require external
networking.
veth veth  (virtual  ethernet)  creates  a  pair  of  network
interfaces  that  act  like  a  pipe.  The  usual  setup  involves
creating a veth pair with one of the peer interfaces kept in
the  host  network  namespace  and  the  other  added  to  the
container  namespace.  The  interface  on  the  host  network
namespace  is  added to a  network  bridge.  In  the Docker
world,  most  of  the  veth  setup  is  done  by  the  Docker

daemon. Libcontainer just expects the network pair to be
already  set  up  and  it  coordinates  adding  one  of  the
interfaces to a newly-created container namespace (Figure
2).

On host
$ ip address list

...

3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460

qdisc noqueue state UP group default 

  link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff

    valid_lft forever preferred_lft forever

1037:  veth694884b:  <BROADCAST,UP,LOWER_UP>  mtu  1460

qdisc pfifo_fast master docker0 state UP group default

qlen 1000

  link/ether 12:0f:8b:dc:27:ac brd ff:ff:ff:ff:ff:ff

Inside container
$ ip address list eth0

1036:  eth0:  <BROADCAST,UP,LOWER_UP>  mtu  1460  qdisc

pfifo_fast state UP group default qlen 1000

  link/ether 02:42:ac:11:02:08 brd ff:ff:ff:ff:ff:ff

    valid_lft forever preferred_lft forever

Figure 2. Example of a veth container setup in Docker inside and
outside the container. Container’s eth0 and host’s veth694884b
interfaces form a veth pair linked to the docker bridge docker0.

In practice,  use of separate bridges can allow creating
virtual networks between containers.

In  addition  to  setting  up  veth  and  bridge  interfaces,
containers  are  linked  together  and  with  the  wider  world
through iptable rules. This strategy with a network bridge
is found to be significantly less performant than using the
host  network  interface  directly,  since  it  requires
forwarding/routing which is not penalty free.
netns The  netns  strategy  allows  multiple  containers  to
share the same network namespace and have access to the
same network devices. A new container can be configured
by passing in the name of the container that has loopback
and/or  veth configured.  This  option can  also  be used to
directly expose physical host networking to a container by
sharing the host network namespace.
MACVLAN/VLAN Libcontainer  supports  creation  of
VLAN and MACVLAN interfaces, but these are not used
directly by Docker today. Instead tools like pipework [7]
can be used to set up complex networking configurations.
This  strategy  has  the  best  performance  of  the  options
mentioned  here  for  environments  where  VLANs  can  be
used.  Libcontainer  does  not  yet  support  the  recently
released ipVLAN which works similarly to MACVLAN,
but switching using L3 [8].

Networking in Container Clusters
Container clusters are compute clusters where the primary
unit of deployment is a container. In a container cluster, all
jobs are  run in containers  and that  becomes the primary
abstraction exposed to jobs (as opposed to a machine or a
virtual  machine).  These  types  of  clusters  have  risen  in
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popularity as containers provide a lightweight and flexible
way  to  isolate  and  deploy  applications.  They’re  also
thought to be more efficient than the alternatives and thus
provide higher overall machine utilization.

Kubernetes is an open-source cluster container manager
released by Google and based on over 10 years of running
container  clusters  internally.  It  schedules,  deploys,  and
manages  groups  of  containers  to  clusters  of  machines.
Systems like  Kubernetes  are  designed  to  provide  all  the
primitives necessary for microservice architectures, and for
these the network is vital. Applications perform nearly all
their  functions  through  the  network.  Discovery,
communication, and synchronization are all done through
the  network.  This  makes  the  network  setup  of  any
Kubernetes cluster one of the most important aspects.

Kubernetes provides a set of key abstractions users can
use to architect their applications. We will examine two of
those  abstractions,  pods  and  services,  and  how  their
networks are configured.

Pod
A pod, like a pod of whales, is a group of tightly coupled
containers [9]. These containers are always deployed side
by side on the same machine. In a pod, all containers share
resources and share fate. All containers in a pod are placed
inside the same network namespace such that they can talk
to each other via localhost and share the port space.  The
pod is also assigned its  own routable IP address.  In this
way pods are exposed outside of the Kubernetes node, are
uniquely addressable, and can bind to any network port. To
the external world, a pod looks like a virtual machine.

Kubernetes  pods  are  comprised  of  groups  of  Docker
containers.  We  create  a  “POD”  infrastructure  container
with a small no-op binary. The other containers in the pod
are then created, joining the existing network namespace of
the POD container. Having an infrastructure pod helps in
persisting network setup as individual containers in the pod
are added, removed, or restarted. Today, we use the veth
bridge networking strategy provided by Docker and assign
it the pod’s IP address. While the performance is tolerable
for now, we would like to replace veth with an ipVLAN
setup  instead.  Kubernetes  is  unable  to  use  MACVLAN
since most software  defined  networks (including Google
Compute Engine’s) don’t support this option.

An alternate to the IP per pod approach is dynamic port
allocation  and  mapping.  We’ve  found  that  systems
choosing  the  latter  approach  are  significantly  more
complex,  permeate  ports  throughout  all  of  their
configurations,  are  plagued  by  port  conflicts,  and  can
suffer  from port  exhaustion. Ports become a schedulable
resource which brings a tremendous amount of complexity.
Applications must be able to change what ports they bind
to at runtime and communicate their port(s) to their users
and  the  service-discovery  infrastructure.  No  longer  can
applications  communicate  with  an  IP  and  a  pre-defined
port, they now must know the IP and the associated port.
We find that the complexity of assigning a routable IP to

each  pod to be preferable  over making ports  a  resource
throughout Kubernetes.

Services
In  Kubernetes  pods  are  considered  ephemeral:  they  can
come  and  go.  Machine  maintenance  can,  for  example,
cause  them  to  be  replaced  with  different  instances  that
serve  the same purpose.  This makes it  inconvenient  and
incorrect to address a pod by its IP address. This is where
services come in. A service is an abstraction that allows the
stable addressing of a group of pods (sometimes called a
microservice) [10]. It functions very similarly to a group of
pods placed in front of a load balancer. A service has an IP
that is guaranteed to be stable. Requests to that IP are then
load balanced to active pods that are behind the service. As
pods come and go, the service updates the routes  it  can
provide to incoming requests.

Services  are  implemented  using  a  combination  of
iptables routes and a user space service proxy running
on all Kubernetes nodes. When a pod on a node makes a
request  to  a  service  through  the  latter's  IP  address  the
iptables rules re-route the request to the service proxy
on the node. The service proxy keeps an updated list of all
the  pods  that  can  answer  requests  for  this  particular
service.  The  proxy  watches  the  shared  cluster  state  for
changes in service membership and can enact the change
quickly. Given the list of member pods, the service proxy
does simple client-side round robin load balancing across
the member pods. This service proxy allows applications to
function  unmodified  in  a  Kubernetes  cluster.  If  the
overhead  of  the service  proxy is  a  concern,  applications
can  perform  the  membership  queries  and  routing
themselves, just as the proxy does. We have not noticed a
significant performance impact from the use of the service
proxy.  We have  work  underway  to  replace  the  service
proxy  completely  with  iptables routes  in  order  to
remove the need for the proxy.

Services  in  Kubernetes  tend to  not  be exposed  to  the
outside world since most microservices simply talk to other
microservices  in  the  cluster.  Public-facing  services  are
extremely important as well since some microservice must
eventually  provide  a  service  to  the  outside  world.
Unfortunately,  public-facing  services  are  not  completely
handled  today  in  Kubernetes  since  there  is  no  external
proxy to act  in  a  similar  manner to the on-node service
proxy. The current implementation of public services have
a load balancer targeting any node in a Kubernetes cluster.
Requests that arrive on this node are then rerouted by the
service proxy to the correct pod answering requests for the
service.  This  is  an  active  area  of  work  where  a  more
complete solution is still being designed.

An alternative to the Kubernetes service abstraction is to
use DNS to redirect to pods. The reason this approach was
not chosen was due to the inconsistent handling of DNS
lookups  in  DNS  client  libraries.  Many  clients  do  not
respect TTLs, do not round robin members, or do not re-do
lookups when membership changes, and we felt that DNS
clients would not update membership quickly enough. 
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Discovery
Services  are  the  key  to  all  communication  within  a
Kubernetes  cluster.  Discovering  the  IP address  of  those
services is done in two ways. The first approach is through
environment variables exposed in the pods. Each pod in the
cluster has a set of environment variables exposed with the
IP addresses of each service. Of course, this does not scale
well with larger clusters. More recently service discovery
was  delegated  to  an  internal  cluster  DNS service.  Each
service gets a DNS address in the cluster that resolves to
the  service  IP.  This  was  found  not  to  have  the  DNS
problems mentioned before since the service IP address is
unique and stable.

Configurations
We’ll  briefly  describe  how  the  Kubernetes  network  is
configured in some of the more popular network strategies.
Andromeda Andromeda is the software defined network
underlying  Google  Compute  Engine  [11].  Andromeda
allows  us  quite  a  bit  of  flexibility  in  programing  the
underlying  network  fabric.  We allocate  a  subnet  of  256
internal 10-dot IPv4 IPs on each node to be used for pods
and ask the fabric  to route this /24 range to the specific
node. Service IP addresses  are allocated from a different
part of the 10-dot pool. Pod to pod communication uses the
internal  10-dot IPs,  but  communication with the internet
gets  NAT’ed  through  the  node  as  those  have  internet
routable IPs.
Flannel Flannel  is  an  overlay  network  developed  by
CoreOS [12]. Flannel uses universal TUN/TAP and UDP to
encapsulate  IP packets.  It  creates  a  virtual  network  very
similar  to  the  one  described  above  for  Andromeda  by
allocating a subnet to each host for use by its pods.
Others Using a virtual bridge on a node and connecting
them  across  is  being  used  to  deploy  more  complex
topologies.  OVS  on  Kubernetes  is  enabled  with  such  a
setup  [13].  Weave  uses  a  similar  technique  to  build  an
overlay network [14].

Resource Management
At the cluster level, networking resources can be managed
by detecting network capacity at each node and allocating
it to running containers like any other resource.  However,
a  practical  resource  model  for  inter-cluster  networking
requires  detailed  topology  information  to  be  really
effective. In most setups, network bandwidth management
responsibility is shared between the fabric provider and the
cluster manager. Given a topology model, containers can
be  scheduled  to  (re-)balance  the  networking  load.  In
addition, when hotspots are identified, a node-local action
can be initiated to limit bandwidth-hogging containers. 

Future Work 
Kubernetes would like to move to virtual migratable IPs so
that  container  migration  becomes  possible  within  the

cluster. There  is  also work underway to introduce “real”
load  balancing  in  the  service  proxy. This  will  allow the
load balancer to balance on things like the utilization and
health of pods behind the service.
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