
Implementing Open vSwitch datapath using TC

Jiří Pírko

Red Hat
Prague, Czech Republic

jiri@resnulli.us

Abstract
This is a proposal to illustrate how to implement the OVS DP
(Open vSwitch kernel datapath) using the Linux TC (traffic
control) subsystem. The TC subsystem existed long before OVS
DP and offers more flexibility. As an example it allows creating
multiple types of classification which can be added as plugins. It
offers capability of working on the ingress or egress path of any
Linux netdev which means the datapath does not require the
central focus to be a switch.

This talk will go into covering the missing classificators and
actions that are implemented in OVS DP and needed by TC to
achieve this goal. The talk will describe recent updates being
done and also the planned ones to add code-reusability to some of
the OVS DP actions and how they are used by tc to achieve the
stated goal.

Keywords
TC, classifier, action, OVS, datapath

 Introduction
The goal of this paper is to provide an alternative approach
to what is currently implemented as OVS DP (Open
vSwitch[1] kernel datapath).

The main reason for this is the increasing amount of
features that have been implemented in multiple kernel
parts. OVS DP code contains a lot of code duplication.
Would be nice to reduce the duplication in the future which
would make the maintenance easier, bug amount lower and
user happier.

Another consequence of moving to TC (traffic control)
would be easier offload to hardware possibilities. It is a
very complex problem to offload flow-based forwarding.
Better to do it once and for all.

This paper will go through the items that need to be
added to TC in order to provide the same features the
current OVS DP offers.

Open vSwitch kernel datapath overview
The OVS DP is a match-action forwarding datapath. The
information about the match and actions to be taken on the
packet which matches are in a form of “flows”. These
flows are inserted, modified or removed by userspace.

The flow format is inherited from OpenFlow
(specification of Open Networking Foundation[2]), as
OVS DP is heavily influenced by that. Each flow consists
of three things:

• Flow key – according to OpenFlow, this key
represents a set of fields in a packet on which the
datapath should match.

• Flow mask – this is a bitmask for flow key. User
can use this to do wildcard matches.

• Set of actions – user can specify a set of various
actions to be executed in case the packet matches
the key with mask. This includes outputting the
packet to a certain port or to userspace, pushing
and popping VLAN headers, etc.

OVS DP has a notion of so called vports (virtual ports).
There are essentially two kinds. Ones are backed-up by
real netdevice, the others are not and serve mainly as a
place holder for tunnels.

Multiple vports are put into groups called bridges. Each
bridge is represented by an “internal” vport which is
backed up by a special kind of OVS DP netdevice.

Another very important part of the datapath
implementation is the possibility to create various tunnels,
including GRE, Geneve and VXLAN tunnels. These
tunnels are not represented by a separate netdevice, they
are not visible from outside Open vSwitch infrastructure.

Classifier-Action subsystem of TC
TC already contains Classifier-Action subsytem[3]. The
referenced paper goes into details so the author
recommends the reader to study that.

This subsystem provides possibility to use various kinds
of classifiers which do the matching of packets based on
various things. Here is an example of couple of classifiers:

• u32 – allows to match packets based on key, mask
and offset values.

• bpf – uses a BPF filter to match packets.
According to the match a chain of actions can be executed.
Here is an example of couple of action:

• skbedit – allows to exit predefined skb fields.
• nat – allows to do stateless NAT.
• mirred – allows to mirror or forward packet to

particular netdevice.
• vlan – allows to push an pop VLAN header.

Using Classifier-Action to implement OVS DP
According to the similarity of the packet matching and
action processing in both TC Classifier-Action (will refer
to this as TC CA later in the text) subsystem and OVS DP,
one could ask if one can be replaced by another.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

TC CA is around for a very long time and it is very
flexible and easily extendable. Many of the existing TC CA
features which are needed to implement OVS DP are in
place. Some of them are not and need to be added.

For implementing the OVS DP functionality, the TC
classifier should be attached to ingress qdisc. The Listing 1
shows very trivial forwarding example. It results into a
blind forward of every packet incoming through one
netdev to another one and vice versa.

Listing 1: Simple forwarding example

The classifier
The mentioned u32 classifier is rich enough to cover the
match features included in OVS DP. But the generic
approach u32 classifier has some downsides. For one, there
has to be a wrapper which would map each individual key
item from OVS DP to u32 key, mask, offset tuple. Also, the
generic approach has performance impacts.

Since there is easy to add a new classifier, the author
started to work on a new classifier called cls_openflow. It
follows the OpenFlow specification in implementation of
the essential key items. OVS DP implements couple of
optional items on top of that. It is planned to support them
in cls_openflow as well.

Currently the cls_classifier supports to match on
following fields:

• Input device
• Destination Ethernet address
• Source Ethernet address
• Ethernet Type
• IP protocol
• IPv4 and IPv6 source address
• IPv4 and IPv6 destination address
• TCP and UDP source port
• TCP and UDP destination port

The cls_openflow classifier is not yet included into
mainline kernel, the plan of the author is to push it very
soon.

Listing 2: Simple use of cls_openflow classifier example

In Listing 2 there is a simple example of use of
cls_openflow classifier. The packets incoming via eth0
with source IP address 192.168.0.1 and destination IP
address 192.168.10.0/24 will be matched. The mirred
action will be executed then to forward the packet using
eth1 netdevice.

Output action
The output action in OVS DP results in a transmission of a
packet using specified port.

In TC CA, there is a mirred action which is very suitable
to cover this action functionality. Reader can see the usage
of mirred in Listing 1 and Listing 2.

Upstream output action
In OVS DP in case an incoming packet does not match any
inserted flow (this is also called “flow-miss”), it is ejected
into userspace. The userspace daemon inspects the packet,
inserts the appropriate flows into kernel datapath and re-
inserts the packet into the datapath. This is done by passing
packet using generic Netlink interface.

In TC CA, this can be implemented using tap interface.
There is only need to create one tap device for one bridge.
When the flow-miss happens, the packet will be forwarded
to the tap device using mirred action. The userspace
daemon will receive this packet via character device
associated with the tap device.

VLAN header pop and push actions
For the purpose of manipulation of VLAN headers using
TC CA the author introduced new action called “vlan”. It
allows to pop existing VLAN header. It also allows to push
a new VLAN header with specified tag and protocol type.

Listing 3 shows an example where every packet
incoming via eth0 will be stripped of the original VLAN
header, new VLAN header with ID 100 will be inserted
and the packet will be forwarded using eth1 netdevice.

Listing 3: VLAN header pop and push example

MPLS header pop and push actions
Similar to VLAN, MPLS support in OVS DP is also
implemented as a fixed sized header added beyond the
Ethernet header.

At the time this paper was written, there was no support
for MPLS header in TC CA. It should be fairly easy to add
this support though.

tc qdisc add dev eth0 ingress
tc filter add dev eth0 parent ffff: protocol all u32 match u32 0 0 \
 action mirred egress redirect dev eth1
tc qdisc add dev eth1 ingress
tc filter add dev eth1 parent ffff: protocol all u32 match u32 0 0 \
 action mirred egress redirect dev eth0

tc qdisc add dev eth0 ingress
tc filter add dev eth0 parent ffff: protocol all openflow \

src_ip 192.168.0.1 dst_ip 192.168.10.0/24 \
action mirred egress redirect dev eth1

tc qdisc add dev eth0 ingress
tc filter add dev eth0 parent ffff: protocol all u32 match u32 0 0 \

action vlan pop \
action vlan push id 100 \
action mirred egress redirect dev eth1

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Tunneling
This subsection focuses on support for VXLAN, Geneve
and GRE tunnels. It's very likely that more tunnel types are
going to appear in the future.

In OVS DP, these tunnels are represented using virtual
ports. There are no backing netdevice for them. They are
all backed just by a socket. The socket is created when a
vport is created, it registers a receive function and there is a
transmit function as well. Currently, OVS DP uses
following transmit functions:

• vxlan_xmit_skb
• geneve_xmit_skb
• iptunnel_xmit

The first possible solution for TC CA is to create a
netdevice for each individual tunnel. After that, the tunnel
netdevice would be treated as any other netdevice. The
mirred action can be used to forward packets into tunnels.

There are two issues to this approach. First, not all of the
tunneling methods can be used as a separate netdevice. For
example Geneve standalone netdevice implementation is
not present. Second, there are some scalability issues
connected with that. There are use cases when user
dynamically creates and destroys thousands of tunnels and
adding and removing netdevices for every of them is not
feasible. That is the reason to introduce a way to handle
tunnels in TC CA without having a netdevice for each
tunnel.

One alternative would be to implement tunneling with
actions. Upon the action creation the tunnel socket would
be created. Upon the action execution the appropriate
tunnel transmit function would be executed.

Problematic part of this approach is the receive side.
Since there is not a netdevice to attach classifier to, TC CA
subsystem cannot process the incoming packets. It would
be possible to introduce a new classifier for tunnel
matching. Then, the user would attach the classifier to the
device on which the tunneled traffic is coming from. That
would lead to unnecessary code duplication.

The second approach would be to extend the existing
interface to provide possibility to create tunnel sockets
from userspace. These sockets would be named. TC CA
interface would be extended to allow to attach ingress
qdisc not only to a netdevice, but also to these named
tunnel sockets. That resolves the receive path.

Having these special sockets present, the specific tunnel
action can be avoided. Instead of it, mirred action could be
extended to forward packets not only to a netdevice, but
also to named tunnel sockets.

Listing 4: Example of use of named VXLAN socket

Listing 4 shows hypothetical usage of named socket. First,
the vxlan tunnel is created using ip tool. Option “sock”
tells kernel not to create netdevice but only a “named
socket”. Then the transmit side is handled by redirecting
data incoming from eth0 to the socket. Then the ingress
qdisc is attached to the socket and received packets are
redirected to eth0.

Note that this is just an idea, there is no actual
implementation done.

Other approaches
TC CA is not the only possibility to implement an
alternative to OVS DP. It would be also possible to use
nftables[4] for the same thing. Actually a lot of
functionality of nftables and TC CA subsystem also
duplicates.

Another approach would be to use eBPF[5] to do match-
action based forwarding.

Conclusion
When all needed parts are implemented in TC CA,
userspace daemons would be able move from the OVS DP
to TC CA. That of course allows it to use not only the
things introduced for OVS DP, but also a lot from the
existing stuff, like various classifiers and actions.

For certain, there will be necessary to face and resolve
many issues. For example locking overhead in current TC
CA will need to be removed.

Acknowledgements
Thanks belong to Jamal Hadi Salim for opening author's
eyes to see that OVS DP is unnecessary and also to Jiří
Benc who has been consulting the solution with the author.

ip link add vxlansock0 type vxlan \
id 42 group 239.1.1.1 dev eth1 sock

tc qdisc add dev eth0 ingress
tc filter add dev eth0 parent ffff: protocol all \

u32 match u32 0 0 \
action mirred egress redirect sock vxlansk0

tc qdisc add sock vxlansock0 ingress
tc filter add sock vxlansock0 parent ffff: protocol all \

u32 match u32 0 0 \
action mirred egress redirect dev eth0

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

References
1. Open vSwitch website, http://openvswitch.org/
2. Open Networking Foundation website,
https://www.opennetworking.org/
3. Jamal Hadi Salim, “TC Classifier Action Subsystem
Architecture”, Proceedings of Netdev 0.1, Feb 2015
4. nftables project website,
http://netfilter.org/projects/nftables/
5. BPF kernel documentation
https://www.kernel.org/doc/Documentation/networking/filt
er.txt

Author Biography
Jiří Pírko is a Linux kernel hacker who has been digging in
networking subsystem for some while. He is an author of
Team device, a bonding replacement. He is also a co-
author of Rocker switch and its support in Linux kernel
including the switchdev infrastructure. His life purpose is
to keep things open, nice, clean and easy.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://openvswitch.org/
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
http://netfilter.org/projects/nftables/
https://www.netdev01.org/sessions/21
https://www.netdev01.org/sessions/21
https://www.opennetworking.org/

