
Cooperative network virtualization in the industrial server applications
on Linux

Sergey Kovalev, Vasiliy Tolstoy

EMC Corporation RCOE
Saint-Petersburg, Russia

kovals@emc.com, tolstv@emc.com

Abstract
The industrial network server applications the authors encounter
in their practice differ from the Linux standard ones. In most
cases, the single-process highly optimized application is exposed
as a number of virtual servers, and the segregation of traffic
becomes a strong requirement. The network needs be configured
independently for each virtual server. Usually, confining the
application to a container is not possible but some level of
cooperation could be ensured instead.

A few prototypes were built, using Linux policy-based routing
and Linux kernel namespaces, combined with use of socket
options. Tests show good performance, however, open questions
still remain. This paper/talk explains the use case, presents the
conceptual model, goes over the techniques applied and
highlights the networking subsystem limitations encountered.

Keywords
Linux, virtualization, policy based routing, namespaces, industrial
server applications, single process, socket options.

 Classical vs. Industrial Server Applications
An industrial server box is a computer platform with a
server application on it. The platform in a lot of cases is a
standard Linux system, but the industrial server application
differs from the classical Linux one.

Of course this dichotomy is a generalization; however
this model is a good starting point for the discussion. Let
us sum up the difference between two kind of server
applications.

Classical Server Application
A classical Linux server application usually has the
following characteristics:
•it is one process, possibly spawning
•serves one physical link (possibly aggregated)
•uses one target IP address
•different configuration requires to start a copy of base
process (not always)
•uses standard system auxiliary services like name
resolving, time, etc.

Industrial Server Application
The industrial server application differs from the standard
one by the following:

•it is one multi-thread process, non-spawning (usually)
•serves multiple physical links
•serves multiple VLANs and IP subnets
•is exposed as multiple virtual servers (VS)
•uses multiple target IP addresses for each VS
•separate auxiliary services independently configured for
each VS

Additional Features
The industrial server application can have some additional
specific features. The authors would like to stress out the
following ones:
•traffic reflection ability: to reply by the same device and
route you got the request
•outgoing connections limited to the virtual server scope
•maximum reuse of the existing Linux stack (for the ease
of support)
•fast startup and fast network configuration
•maximum use of hardware offload, TCP and iSCSI

Single-process Application
The industrial server applications tend to be single-process.
The reasons for that are the following:
•low latency: no context switch, no cache invalidation, zero
copy is possible
•high performance: the same as above
•deduplication: on the storage systems, the wider the
deduplication scope the better

Cooperative Virtualization
Industrial server application requires some kind of Linux
net stack slicing. It is important that the application is
aware of it and could be designed with this requirement in
mind. We can call it “cooperative virtualization”.

So what means do we have in Linux to support this kind
of virtualization?
•virtual machines
•lightweight virtualization/containers (LXC/Dockers)
•Linux namespaces “by hand”
•policy based routing
•firewall configuration
•clever application design

Virtual machines and containers do not fit the
requirements: they imply separate processes. Clever

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

mailto:kovals@emc.com
mailto:tolstv@emc.com

application design alone is limited by the socket API: not
much control is available. The firewall configuration has
its potential, but is limited by absence of the documented
netfilter API.

In practice, the designer chooses from two other options:
policy based routing (PBR) and Linux namespaces (NS).

Policy Based Routing
An application may create a number of sockets bound to a
specific IP addresses and listen on them. We can write rules
with the “src IP” criteria and have a per-IP routing tables
then. It covers the “one IP per VS” use case, but is not
enough for “set of IPs per VS”.

It would be good if the virtual server can tag its sockets
by some ID and the PBR can use this tag as a rule criteria
class. Fortunately, there is one: SO_MARK socket option
is actually the PBR “fwmark”. The routing table system
then gets trivial (see Table1).

Rules:
...
30010: from 10.0.0.5 lookup 10
30011: from 10.0.1.5 lookup 11
30012: from all fwmark 0xc lookup 12
...

Table 10:
10.0.0.0/24 dev eth0 src 10.0.0.5
default via 10.0.0.1 dev eth0 src 10.0.0.5

Table 11:
10.0.1.0/24 dev eth0 src 10.0.1.5
default via 10.0.1.1 dev eth0 src 10.0.1.5

Table 12:

10.0.0.0/24 dev eth0 src 10.0.0.5
10.0.1.0/24 dev eth0 src 10.0.1.5
default via 10.0.0.1 dev eth0 src 10.0.0.5

Table 1. PBR route tables system for a virtual server with two IPs.

The application then needs to carefully tweak the
number of routing tables when the IP address set of a
virtual server changes.

UDP Problem
A few practical issues pop up when using the PBR

approach. Most notable is the UDP problem. While for
each TCP connections the kernel spawns off a new socket,
the UDP “pseudo-connections” for a multiple virtual
servers are usually done via the single socket bound to
some well-known port. It is impossible to clone such a
socket, so one cannot mark a socket once and use it for a
certain connection.

To overcome this, a few approaches could be used. The
most radical one is the dynamic change of socket mark on
the per-UDP-packet basis (see Fig. 1). The application gets
complicated and gets the performance issues.

Figure 1. Dynamic marking of a UDP socket.

Some Linux mechanism to split the incoming traffic
between UDP sockets with different marks may help here.

Our Results with PBR
We have tested this approach on a system with an
application exposed as a number of virtual NAS servers
sharing the common backend. CIFS and NFS file access by
TCP and UDP transports were supported. The system is
based on the vanilla Linux kernel, and the application uses
the custom name resolving library with different
configuration for each VS.

The tests show that the performance is not affected
except for the UDP transport, but the overall effect on
performance is low because of the very limited use UDP
has.

Network Namespaces
With the PBR, all the VSes share the same IP addres plan
and firewall configuration. The namespaces allow us to
have use the independent IP address plans and firewall
configurations for group of VSes.

A thread can independently switch to a different
namespace, open a socket and work with it. More than that,
we have practically tested that a thread can open a socket
in the namespace A, switch to the namespace B and open a
socket there, then switch to the namespace C and still work
with both A and B sockets. Therefore, an application may
serve different network namespaces at the same time.

Any network device can be included in a namespace,
including the virtual devices of (almost) any kind. It means
that if you can separate the traffic between two devices,
you can direct it to different namespaces.

The simple practical example we used is presented on
Figure 2.

Two mod8021q devices, one for VLAN 100 and another
for VLAN 200 were created on the eth0 NIC device. They
were included in the namespaces A and B correspondingly.
Each VLAN corresponds to the IP subnet with the same
10.1.1.0/24 IP addresses. The test application still could
serve them both simultaneously.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Figure 2. Basic multi-namespace application.

Problems with the Namespaces
The additional technologies and auxiliary services need to
be sliced too:
• RPC port mapping (rpcbind)
• system time (NTP)
• TCP and iSCSI offload

Patching the rpcbind seems simple. However, the
standard Linux rpcbind does not support multiple network
namespaces out of the box, so the one who patches it is
bound to support it then.

Running the rpcbind in a full-fledged container may
solve the problem but make the system configuration even
more complicated.

For the moment, independent time for different virtual
servers is an open question.

We expect our further investigations to find us more
problems of this kind.

Our Results with the Namespaces
We have created a prototype system with a multi-
namespace test application exposed as a number of virtual
servers in different namespaces.

To test the performance effect we have created a 100-
namespaces configuration using 100 VLAN IDs both on
the server and client VMs (see Fig. 3). On the server side, a
single application accepts the TCP connections. On the
client side, 100 different client processes establish the
connections to the server, and send/receive some data in a
cycle.

The performance impact of the namespaces was found to
be negligible. The memory consumption increase is about
120 kB/NS at the net object creation time and does not
change with the I/O load (see Fig. 4).

The system uses the vanilla Linux kernel. One of our
goals was not to modify the kernel, and it seems that it is
possible.

Our experiments with the other namespaces problem
solutions are on the very early stage at the moment, and are
not ready to be presented.

Figure 3. Scalability/performance test setup.

Figure 4. Scalability/performance test results.

Conclusion
Together with the reasonable application modifications,
current Linux networking stack features allow the
cooperative virtualization sufficient for the industrial
server applications.

However, there still is room for improvement. Most
notably, the PBR UDP problem, and the independent per-
namespace system auxiliary services are the open
questions.

Bibliography
Rami Rosen, Linux Kernel Networking: Implementation
and Theory (Apress, 2013).
Christian Benvenuti, Understanding Linux Network
Internals (O'Reilly Media, 2005).
Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Muller
and Marc Bechler, Linux Network Architecture (Prentice
Hall, 2005)
Robert Love, Linux Kernel Development, 3rd Edition
(Addison-Wesley Professional, 2010)
ip man page online, accessed February 10, 2015,
http://man7.org/linux/man-pages/man8/ip.8.html

Authors Biographies
Sergey Kovalev is a Senior Software Engineer at EMC
Corporation in Russia COE. He has worked for EMC since
2010. As a senior software engineer Sergey is responsible
for the development of network management software for
enterprise storage systems. His key interests are OS design,
low-level programming and Linux networking. Sergey has
a BS in Computer Sciences from the State Saint-Petersburg
Polytechnic University.

Vasiliy Tolstoy is a Principal Software Engineer at EMC
Corporation in Russia COE. He has worked for EMC since
2010. His current professional interests include Linux
networking, virtualization, and SDN/NFV. He is also
interested in UI design, OS design and hardware-level
programming. He has 26 years of combined experience in

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

software design, development, and system administration.
He studied physics at the State Saint-Petersburg University.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

