
BIRD Internet Routing Daemon

Ondřej Zajı́ček
CZ.NIC

Abstract

We introduce BIRD Internet Routing Daemon, a Linux rout-
ing software. We present the overview of BIRD project, its
basic concepts and design decisions, common applications,
supported protocols and and examples of usage. We also dis-
cuss pitfalls in userspace/kernel interfaces encountered during
BIRD development.

Introduction
BIRD overview
BIRD Internet Routing Daemon is a routing daemon; i.e., a
software responsible for managing kernel packet forwarding
tables. It is a free implementation of several well known and
common routing and router-supplemental protocols, namely
RIP, RIPng, OSPFv2, OSPFv3, BGP, BFD, and NDP/RA.

BIRD supports IPv4 and IPv6 address families, Linux ker-
nel and several BSD variants (tested on FreeBSD, NetBSD
and OpenBSD). BIRD consists of bird daemon and birdc in-
teractive CLI client used for supervision.

BIRD started as a student project at the Faculty of Math
and Physics, Charles University, Prague in 1999. After the
project was finished, the development mostly ceased. Since
2008, BIRD is again in active development, sponsored by
CZ.NIC.

BIRD is a free / open source software, freely distributed
under GNU General Public License.

BIRD features
BIRD has several distinctive features compared to alternative
routing daemons:

First, BIRD has native support for multiple protocol in-
stances and multiple routing tables. This was one of original
design considerations.

Second, BIRD has programmable route filters by internal
scripting language with a familiar syntax, instead of usual ac-
cess control lists. This allows greater expressive power when
configuring route distribution.

Third, BIRD uses clear and structured config files for its
configuration. It has automatic runtime reconfiguration –
when the config file is changed and reconfiguration is re-
quested, BIRD automatically applies necessary changes with-
out disrupting other routing protocol sessions.

Fourth, BIRD has rather extensive documentation, both
user and programmer one.

Typical applications
The basic application is using Linux system as a software
router, where Linux kernel serves as a data plane, while
BIRD serves as a control plane, communicating with other
routers in the network, discovering the network topology and
computing the routing table. Such application works well
unless forwarded data rates are too high, requiring hardware
routing solutions.

There are also applications where data traffic is not for-
warded, system traffic is limited to control traffic and local
data traffic. These are especially suitable for routing software
like BIRD. Several examples: monitoring tools for OSPF net-
works, BGP route reflectors, fail-over solutions for servers.

One particular example is using BIRD as BGP route server
in internet exchange points. The purpose of BGP route
servers in IXPs is to exchange, filter and distribute routing
information between BGP border routers of IXP clients to
eliminate the need for configuring a BGP session between
each pair of clients. Data traffic is exchanged directly be-
tween border routers bypassing the route server. Such task
requires a flexible and efficient control plane as usually sep-
arate routing table for each client is used and extensive route
filters based on RIR databases are applied. BIRD is very pop-
ular in European IXP community, according to Euro-IX 2014
report 1, 64 % of members’ route servers run BIRD.

Concepts
There are few basic conceptual objects in BIRD: routes, pro-
tocols, tables and filters.

Routes
Routes are basic objects managed by BIRD. They are gener-
ated by protocols and stored in routing tables. Like routes in
kernel forwarding table, they have a destination network pre-
fix, an associated interface and the target (a gateway or a spe-
cific action like unreachable). In addition to this, they have
a list of associated attributes – the responsible protocol, the
route preference and some protocol-specific attributes (OSPF
metrics, multiple kinds of BGP attributes).

1https://www.euro-ix.net/documents/1467-euro-ix-route-servers-stats-pdf

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Protocols
Protocol objects represent instances of routing protocols
(BGP, OSPF, RIP), or other route sources/sinks (static, ker-
nel, direct). Protocols have name, type, operating state (start,
up, stop, down), associated routing table (usually one, but
in some cases multiple), configuration, statistics and internal
state.

Protocols generate routes, propagate them to associated
routing table and receive routes from it. It is possible to have
multiple instances of one protocol type (e.g. OSPF) as sepa-
rate protocol objects with different names (e.g. ospf1, ospf2).
Protocols could be independently enabled, disabled, restarted
or reconfigured. Protocols could be examined using show
protocols command.

Tables
Routing tables are data tables where routes are accumulated.
They are userspace analogy of kernel packet forwarding ta-
bles. In network engineering terminology, they are called
RIB (routing information base), while kernel forwarding ta-
bles are called FIB (forwarding information base).

A route is generated by a protocol, then imported to an
associated routing table, where it is stored. Routing tables
store one route per destination and source protocol. There-
fore, it is possible to have multiple routes for each destination
(from different protocols) concurrently. For each destination,
a preferred route is selected (based on route preferences and
protocol metrics) and then exported to associated protocols.

BIRD supports any number of routing tables. There is a
default one (named master), others have to be defined in con-
figuration. Note that BIRD routing tables are not automat-
ically synchronized with kernel forwarding tables. There is
a kernel protocol serving to that purpose – when a route is
exported to the kernel protocol, it is propagated to a (config-
urable) kernel forwarding table, and vice versa. Therefore,
some BIRD routing tables may be synchronized with kernel
forwarding tables, while others may be just internal to BIRD.
There is also a pipe protocol to exchange routes between two
routing tables.

Table BTable A

BGP 1U BGP 1D BGP 2U BGP 2D

Pipe

Kernel 1 Kernel 2

Filters
Filters stand between protocols and tables. When a route is
imported from a protocol to a table, it passes through an im-
port filter. Likewise, when a route is exported from a table
to a protocol, it passes through an export filter. Such filters
may modify, reject or accept routes. A filter is written in a
scripting language, which may access and examine all route

attributes. Named filters are defined as top-level objects but
used in import or export options of a protocol. Filters can
also be defined using where expression. There are two key-
words all and none that can be used as accept-all or reject-all
filters. Note that default is import all and export none.

define martians = [10.0.0.0/8+,
172.16.0.0/12+, 192.168.0.0/16+,
169.254.0.0/16+, 224.0.0.0/4+,
240.0.0.0/4+, 0.0.0.0/32-];

filter bgp_in {
if net ˜ martians then reject;
if bgp_path.first != 1234 then reject;
if bgp_path.len > 64 then reject;

if net ˜ 128.66.0.0/16+
then bgp_local_pref = 500;
else bgp_local_pref = 100;

bgp_med = 0;
accept;

}

protocol bgp {
import filter bgp_in;
export where source = RTS_BGP;

local 192.168.1.1 as 65100;
neighbor 192.168.1.2 as 65200;

}

Usage
BIRD is mainly configured through its config file, usually
/etc/bird.conf or /etc/bird/bird.conf.
After start, BIRD setups a unix socket, usually
/var/run/bird.ctl, which is used by birdc inter-
active client for supervision. There are no specific access
control mechanisms for the client, access is controlled just by
file permissions of the socket. BIRD client is an interactive
shell which uses GNU Readline for CLI. It contains interac-
tive help (accessible by ‘?’). The most important commands
are:

• show route [all] . . .

• show protocols [all]

• show interfaces

• show ospf . . .

• enable | disable | restart proto

• configure [timeout | undo | confirm]
• down

Compared to e.g. Quagga, where each protocol is a sepa-
rate process, in BIRD all protocols are handled by one pro-
cess. Note that in current BIRD, IPv4 and IPv6 are handled
by two separate daemons, bird for IPv4 and bird6 for IPv6.
Likewise, the client for IPv6 daemon is named birdc6. There
is also a lightweight client, birdcl, that does not depend on
GNU Readline.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Basic setup
Basic configuration is pretty simple. Global options are usu-
ally used just to specify router ID and logging. Protocol de-
vice is necessary for enumeration of network interfaces. Pro-
tocol kernel is used for synchronization of BIRD routing ta-
bles and kernel forwarding tables. Protocol static allows to
specify a set of static routes.

router id 192.168.1.1;
log syslog all;

protocol device {
}

protocol kernel {
export all;
scan time 10;

}

protocol static {
route 192.168.10.0/24 via 192.168.1.2;
route 192.168.20.0/24 unreachable;

}

OSPF – Open Shortest Path First
OSPF is a popular link-state routing protocol for internal net-
works. Each router monitors reachability of its neighbors, the
local network topology is packed to LSAs (Link State Adver-
tisements), distributed to neighbors and flooded through the
network. Therefore, every router gets a complete map of the
network and computes shortest paths to all destinations.

BIRD implements OSPFv2 for IPv4 (RFC 2328), OSPFv3
for IPv6 (RFC 5340), and NSSA areas (RFC 3101).

A protocol instance represents a complete OSPF domain
possibly with multiple areas and active interfaces. Multiple
instances are possible but usually not necessary. It maintains
OSPF topology, when it changes, OSPF routing table is cal-
culated and imported to BIRD routing table. When a route
is exported to an OSPF protocol, it is included in its topol-
ogy as an external LSA. Device routes for OSPF interfaces
are handled internally and generated automatically.

protocol ospf {
export all static routes to OSPF
export where source = RTS_STATIC;

area 0 {
interface "eth0" {

cost 5; hello 5; wait 10; dead 25;
};
interface "eth*" {

cost 100; type pointopoint;
};

};
}

BGP – Border Gateway Protocol
BGP is the standard protocol for internet routing. A router
receives paths to reachable destinations from its neighbors. It
chooses preferred paths by path lengths and local policy. Pre-
ferred paths are used as a routes for forwarding and also pos-
sibly propagated to other neighbors. Forwarded routes con-

tain many additional attributes, mainly AS PATH describing
the path to the destination as a list of autonomous systems.

BIRD implements BGPv4 (RFC 4271), multiprotocol BGP
(RFC 4760) for IPv6 (RFC 2545) and multiple BGP exten-
sions:

• RFC 1997 – communities attribute

• RFC 2385 – MD5 password authentication

• RFC 3392 – capability negotiation

• RFC 4360 – extended communities attribute

• RFC 4456 – route reflectors

• RFC 4724 – graceful restart

• RFC 4893 – 4B AS numbers

• RFC 5668 – 4B AS numbers in extended communities

A BGP protocol instance in BIRD represents one BGP ses-
sion. Therefore, it is expected to setup multiple BGP proto-
cols, one for each BGP neighbor. A BGP implementation
in BIRD is conceptually simple, it does not maintain much
internal state, it is essentially a pipe to the neighbor. All ex-
ported routes (from the BIRD routing table) are sent to the
neighbor, all routes received from the neighbor are imported
to the BIRD routing table. BGP path attributes are accessible
from import and export filters, BGP path decision process is
handled in BIRD routing tables as a part of preferred route
selection.

An example of configuration is skipped as it is contained
in the example for Filters.

BFD – Bidirectional Forwarding Detection
BFD is a protocol for neighbor reachability and liveness test-
ing. It is a supplementary protocol to OSPF, BGP and others.
Although these protocols have internal neighbor liveness test-
ing, they have timers with 1-second granularity and their re-
action time is usually in tens of seconds, while BFD reaction
time is tens to hundreds of milliseconds.

BIRD implements BFD (RFC 5880) for IPv4 and IPv6,
both the single hop variant (RFC 5881), and the multihop
variant (RFC 5883).

protocol bfd {
interface "eth*" {
interval 50 ms;
multiplier 4;

};
}

protocol bgp {
. . .

local 192.168.1.1 as 65100;
neighbor 192.168.1.2 as 65200;
bfd;

}

NDP/RA – IPv6 router advertisements
IPv6 routers use router advertisement packets from Neighbor
Discovery Protocol (NDP) to announce their presence on the
network to hosts. Hosts then use it for IPv6 stateless address

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

autoconfiguration. On Linux, this is usually handled by The
Router Advertisement Daemon (radvd). BIRD could also
generate router advertisement packets by protocol radv. It
can learn announced address prefixes from the interface con-
figuration. It also support RDNSS a DNSSL extensions for
DNS autoconfiguration on hosts. There is also a support for
dynamic IPv6 router advertisements – advertisements trig-
gered by availability of a configured route in BIRD routing
table.

protocol radv {
interface "eth*";
rdnss 2001:0DB8:1234::10;
dnssl "domain.cz";
trigger 2000::/3;

}

Pitfalls
During BIRD development, we encountered several pitfalls
in kernel networking API.

Sockets API
Although the Sockets API is well-behaved and mature in-
terface for simple TCP connections, there are plenty issues
when it is used for multicast with UDP or raw sockets. The
first issue is whether to use one global socket, or one socket
per interface. Although the first option seems natural, there
are often hidden limits for the number of joined multicast
groups per socket while memberships are specific per inter-
face, therefore such limits are encountered on systems with
many network interfaces. For this and other reasons, it seems
that the second option is generally better.

Another issue is that there is no universal reliable way to
specify the source address and the destination interface. The
syscall bind() is useless in this case, as it has multiple unre-
lated effects (like filtering incoming messages). We currently
use IP PKTINFO on Linux, IP SENDSRCADDR on BSD
for UDP and IP HDRINCL on BSD for raw sockets. Hope-
fully, for IPv6, IPV6 PKTINFO works well in all cases. Also
note that on Linux, socket option SO BINDTOIFACE is very
useful for our style of usage of sockets; unfortunately, no such
option is available on BSD.

Ephemeral Source Port Selection
When TCP or UDP communication is initiated with-
out explicitly specifying the source port, one is auto-
matically allocated. Such port is called an ephemeral
port. According to IANA and RFC 6335, range
49152–65535 should be used for ephemeral ports.
Linux uses by default range 32768–61000, tunable by
net.ipv4.ip local port range. FreeBSD uses by
default range 10000–65535, also tunable. In FreeBSD, there
is a socket option IP PORTRANGE HIGH that forces OS
to use the proper ephemeral port range. Unfortunately, there
is no such option in Linux. Why even care for ephemeral
port selection? Some BFD implementations reject received
packets with source port< 49152.

Netlink and FIB
FIB behavior and its management using the Netlink interface
is a source of multiple pitfalls:

The first issue is behavior of multipath routes where there
is no consistency between IPv4 and IPv6. An IPv4 multipath
route is one route with several next hop fields, while IPv6
multipath route is a set of routes with the same destination
network. There is a compatibility layer for IPv6 routes, but it
does not behave consistently (a route with multiple next hops
could be entered, but it is scanned back as a multiple separate
routes).

The second issue are missing RTM DELROUTE notifi-
cations when routes are removed due to shutdown of re-
lated interfaces. Although there is a reason for that (to not
flood Netlink with many RTM DELROUTE notifications),
it is unexpected and inconsistent behavior and the Netlink
was flooded with RTM NEWROUTE messages when these
routes were added.

The third issue is the default limit for IPv6 FIBs,
4096 routes (net.ipv6.route.max size), which is too
small for common usages and completely unexpected by
users (as there is no such limit for IPv4 FIBs).

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

