
 1

Hardware switches - the open-source approach

Jiří Pírko
jiri@resnulli.us

Red Hat

 2

Scope of talk

● Open-source Linux support for various switch and switch-ish chips.

– Including L2, L3, flow-based forwarding

● TOR (Top-of-rack switch)

● Switch chips in servers

– Mesh topologies

– Could replace TORs

● SR-IOV

– Switch embedded into NIC

– Used for virtualization purposes

● Home routers

– e.g. OpenWRT devices

● Custom switch board Linux deployment

 3

Current state

● Ice age

● Switch chip vendors

– Broadcom, Intel, Mellanox, ...

– They believe they need to protect their “intellectual property”

– Each has its own “SDK” - userspace binary blob user for accessing HW

● Vendor lock-in for appliance vendors
● Appliance vendors (boxes)

– Cisco, Juniper, Brocade, ...

– They buy chips from others and include them into their products

– Proprietary tools for switch chip manipulation

● Vendor lock-in for customers

– Often use Linux kernel, however not for switch chip manipulation

 4

NIC driver

userspace

kernel

kernel

hardware

vendor X switch Y chip

swp0phy swp1phy

eth0

swpNphy

......

#ip
#tc
#bridge

RT Netlink ethtool ioctl

#ethtool

custom app
Network
Manager

eth0phy

NIC

vendor X
proprietary

SDK

proprietary switch app Current state

 5

Desired model
● Possibility to re-use existing network tools for switches

– ip, ethtool, bridge, tc, Network Manager, open vSwitch toolset

● One switch port is represented as one network device (e.g. eth0)

● Port devices should be able to work as independent NICs

– L3 address assign, packet TX and RX

– Routing between ports could be offloaded into hardware

● Port devices should work in layered topologies

– Layered devices: bridge, bonding, Open vSwitch

– Offload layered devices functionality to hardware if possible

● Ethtool API implementation by driver

● Provide a way to find out if two ports belong to the same switch chip

● Model working name is “switchdev”

 6

NIC driver

userspace

kernel

kernel

hardware

vendor X switch Y chip

swp0phy swp1phy

eth0

swpNphy

......

#ip
#tc
#bridge

RT Netlink ethtool ioctl

#ethtoolcustom app
Network
Manager

eth0phy

NIC

switch Y
driver

swp0

swpN

swp1

Desired model

 7

Linux Switchdev infrastructure
● Switch device specific set of network device operations (ndos)

– To pass info to switch driver and also to query driver for some information

● Switch device notifier

– To propagate hardware event to listeners

switchdev
infrastructure

RT Netlink Ethernet bridge
Open vSwitch

datapath

switch X driver

int netdev_switch_*(...)

ops->ndo_switch_*(...)

action event

notifier

int call_netdev_switch_notifiers(...)

notifier

 8

L2 forwarding offload
● Merged into upstream Linux kernel

– Linux bridge support

– Rocker switch driver

● Rocker switch is hardware emulated in QEMU based on OF-DPA model
● Rocker was created for testing and prototyping purposes

● Two new ndos introduced

– ndo_switch_parent_id_get

● Called to obtain ID of a switch port parent (switch chip)

– ndo_switch_port_stp_update

● Called to notify switch driver of a change in STP state of bridge port
● Two new switchdev notifier events introduced

– NETDEV_SWITCH_FDB_ADD and NETDEV_SWITCH_FDB_DEL

● Raised by switch driver in case hardware an FDB entry is added or removed

 9

Future plans
● L3 forwarding offload - an attempt by Scott Feldman

– Introduction of two new ndos

● ndo_switch_fib_ipv4_add and ndo_switch_fib_ipv4_del

– Called by the core IPv4 FIB code when installing/removing FIB entries
to/from the kernel FIB

● Flow-based forwarding offload - an attempt by John Fastabend

– Called “Flow API”

– Introduces a new Generic Netlink interface called “net_flow_nl”

● To be used for offloaded flows maintenance only

– Userspace app queries hardware capabilities and do the flow insertions accordingly

● TC-based flow offload

– An alternative to “Flow API”

– Extends existing TC Netlink API

– The same interface for software datapath and hardware offload

 10

userspace

kernel

kernel

hardware

RT NetlinkTC filters:
u32
bpf
...

xflows

actions:
police
mirred

...
xflows

xflows backend API

vendor X switch Y chip

swp0phy swp1phy swpNphy

......

switch Y
driver

swp0

swpN

swp1

xflows backend
implementation

Open vSwitch
datapath

xflows backend
implementation

br0

generic Netlink

open vSwitch
userspace

custom flow
managing appTC-based flow API

 11

SR-IOV use-case
● Embedded switch

– Interconnects VFs and PF

– Capabilities differ from NIC to NIC

– From Linux kernel perspective should be handled like any other switch chip

● Purpose of switchdev is to provide that abstraction

– Lot of potential for virtualization use-cases

● Open vSwitch acceleration
● Containers, OpenStack

 12

NIC X driver

kernel

hardware

phyPF

NIC X
embedded
switch
driver

SR-IOV
NIC X

embedded
switch

swpPF

VF0

swpVF0

VF1

swpVF1

VF2

swpVF2

ethPF

ethVF0

ethVF1

ethVF2

swpPF

swpVF0

swpVF1

swpVF2

SR-IOV
use-case

 13

DSA use-case
● Switch PHY

– Connected via MII

– Allows to rx and tx packets via particular ports using “DSA tags”

– In kernel, for each port there is a netdevice created

– Fits into the switchdev picture

● looks like any other switch driver exposing switch ports

 14

DSA
use-case

kernel

hardware

switch Y chip

swp0phy swp1phy swpNphy

......

switch X
DSA driver

swp0

swpN

swp1eth0

tagged

 15

The end
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

