
Copyright © 2015 NTT Corp. All Rights Reserved.

Hardware Accelerating Linux
Network Functions
Part I: Virtual Switching Technologies in Linux

Toshiaki Makita
NTT Open Source Software Center

2 Copyright © 2015 NTT Corp. All Rights Reserved.

• Virtual switching technologies in Linux
• Software switches and NIC embedded switch

• Userland APIs and commands for bridge

• Introduction to Recent features of bridge
(and others)
• FDB manipulation

• VLAN filtering

• Learning/flooding control

• Non-promiscuous bridge

• VLAN filtering for 802.1ad (Q-in-Q)

• Demo
• Setting up non-promiscuous bridge

Part I topics

3 Copyright © 2015 NTT Corp. All Rights Reserved.

• Linux kernel engineer at NTT Open Source
Software Center

• Technical support for NTT group companies

• Active patch submitter on kernel networking
subsystem

• bridge, vlan, etc.

Who is Toshiaki Makita?

4 Copyright © 2015 NTT Corp. All Rights Reserved.

• Linux (kernel) has 3 types of software
switches

• bridge

• macvlan

• Open vSwitch

• NIC embedded switch in SR-IOV device is
also used instead of software switches

• These are often used for network backend in
server virtualization

Switching technologies in Linux

5 Copyright © 2015 NTT Corp. All Rights Reserved.

kernel

• HW switch like device (IEEE 802.1D)
• Has FDB (Forwarding DB), STP (Spanning tree), etc.
• Use promiscuous mode that allows to receive all packets

• Common NICs filter unicast whose dst is not its mac address
without promiscuous mode

• Many NICs also filter multicast / vlan-tagged packets by default

bridge

eth0

TCP/IP

kernel

eth0

TCP/IP

bridge

eth1

handler hook

pass to
upper layer

promiscuous
mode

without bridge with bridge

br0

if dst mac is bridge device

promiscuous
mode

6 Copyright © 2015 NTT Corp. All Rights Reserved.

• Used with tap device

• Tap device

• packet transmission -> file read

• file write -> packet reception

bridge with KVM

kernel

eth0

bridge

tap0

qemu/vhost

vfs

Guest

eth0

fd

read/write

7 Copyright © 2015 NTT Corp. All Rights Reserved.

• VLAN using not 802.1Q tag but mac address

• 4 types of mode

• private

• vepa

• bridge

• passthru

• Using unicast
filtering if supported,
instead of promiscuous
mode
(except for passthru)

• Unicast filtering allows
NIC to receive multiple
mac addresses

macvlan

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

handler hook

unicast filtering

8 Copyright © 2015 NTT Corp. All Rights Reserved.

• Light weight bridge

• No source learning

• No STP

• Only one uplink

• Allow traffic
between macvlans
(via macvlan stack)

macvlan (bridge mode)

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

External SW

9 Copyright © 2015 NTT Corp. All Rights Reserved.

• macvtap

• tap-like macvlan variant

• packet reception
 -> file read

• file write
 -> packet transmission

macvtap (private, vepa, bridge) with KVM

kernel eth0

macvtap0 macvtap1

macvlan

qemu/vhost

Guest

eth0

fd

read/write

qemu/vhost

Guest

eth0

fd

read/write

10 Copyright © 2015 NTT Corp. All Rights Reserved.

• Supports OpenFlow
• Can be used as a normal switch as well

• Has many features (VLAN tagging, VXLAN, Geneve, GRE, bonding, etc.)

• Flow based forwarding
• Control plane in user space

• flow miss-hit causes upcall to userspace daemon

Open vSwitch

kernel

eth0

user space

openvswitch
(datapath)
data plane

eth1

handler hook

promiscuous
mode

OpenFlow
controller

daemon
(ovs-vswitchd)
control plane

upcall

Flow table
(cache)

Flow table

FDB

11 Copyright © 2015 NTT Corp. All Rights Reserved.

• Configuration is the same as
bridge

• used with tap device

Open vSwitch with KVM

kernel

eth0

openvswitch

tap0

qemu/vhost

vfs

Guest

eth0

fd

read/write

12 Copyright © 2015 NTT Corp. All Rights Reserved.

• SR-IOV

• Addition to PCI normal physical function (PF),
allow to add light weight virtual functions (VF)

• VF appears as a network interface (eth0_0, eth0_1...)

• Some SR-IOV devices have switches in them

• allow PF-VF / VF-VF communication

NIC embedded switch (SR-IOV)

kernel SR-IOV supported NIC

eth0 eth0_0 eth0_1

PF VF VF

embedded switch

13 Copyright © 2015 NTT Corp. All Rights Reserved.

• SR-IOV with KVM

• Use PCI-passthrough to attach VF to guest

NIC embedded switch (SR-IOV)

kernel SR-IOV supported NIC

eth0

embedded switch

qemu

Guest

qemu

Guest

eth0_1 eth0_0

14 Copyright © 2015 NTT Corp. All Rights Reserved.

• Various APIs

• ioctl

• sysfs

• netlink

• Netlink is preferred for new features

• Because it is extensible

• sysfs is sometimes used

• Commands

• brctl (in bridge-utils, using ioctl / sysfs)

• ip / bridge (in iproute2, using netlink)

Userland APIs and commands (bridge)

15 Copyright © 2015 NTT Corp. All Rights Reserved.

• brctl

• These operations can be performed by netlink
based commands as well (Since kernel 3.0)

• And recent features can only be used by netlink
based ones or direct sysfs write

Userland APIs and commands (bridge)

brctl addbr <bridge> ... create new bridge
brctl addif <bridge> <port> ... attach port to bridge
brctl showmacs <bridge> ... show fdb entries

ip link add <bridge> type bridge ... create new bridge
ip link set <port> master <bridge> ... attach port
bridge fdb show ... show fdb entries

bridge fdb add
bridge vlan add
etc...

16 Copyright © 2015 NTT Corp. All Rights Reserved.

• FDB manipulation

• VLAN filtering

• Learning / flooding control

• Non-promiscuous bridge

• VLAN filtering for 802.1ad (Q-in-Q)

Recent features of bridge (and others)

17 Copyright © 2015 NTT Corp. All Rights Reserved.

• FDB

• Forwarding database

• Learning: packet arrival triggers entry creation

• Source MAC address is used with incoming port

• Flood if failed to find entry

• Flood: deliver packet to all ports but incoming one

FDB manipulation

kernel

eth0

bridge

eth1 packet
arrival from
aa:bb:cc:dd:ee:ff

MAC address Dst

aa:bb:cc:dd:ee:ff eth0

...

learning

FDB

18 Copyright © 2015 NTT Corp. All Rights Reserved.

• FDB manipulation commands

• Since kernel 3.0

FDB manipulation

kernel

eth0

bridge

eth1 specified port

MAC address Dst

specified mac port

...

bridge fdb add <mac address> dev <port> master temp
bridge fdb del <mac address> dev <port> master

19 Copyright © 2015 NTT Corp. All Rights Reserved.

• What's "temp"?
• There are 3 types of FDB entries

• permanent (local)

• static

• others (dynamically learned by packet arrival)

• "temp" means static here

• "bridge fdb"'s default is

permanent

• permanent here means
"deliver to bridge device"
(e.g. br0)

• permanent doesn't deliver
to specified port

FDB manipulation

kernel

eth0

bridge
(br0)

eth1

br0 if match
permanent

bridge fdb add <mac address> dev <port> master temp

specified port

20 Copyright © 2015 NTT Corp. All Rights Reserved.

• What's "master"?
• Remember this command?

• "bridge fdb"'s default is "self"

• It adds entry to specified port (eth0) itself!

FDB manipulation

kernel

eth0

bridge

eth1 specified port
(self)

master

bridge fdb add <mac address> dev <port> master temp

ip link set <port> master <bridge> ... attach port

21 Copyright © 2015 NTT Corp. All Rights Reserved.

• When to use "self"?
• Unicast/multicast filtering

• Use case: SR-IOV embedded SW

• VTEP-Mac mapping table (vxlan)

FDB manipulation

kernel SR-IOV supported NIC

eth0 eth0_0 eth0_1
PF VF VF

embedded switch

bridge master

self

22 Copyright © 2015 NTT Corp. All Rights Reserved.

• Example: Intel 82599 (ixgbe)
• Some people think of using both bridge and SR-IOV due

to limitation of VFs
• bridge puts eth0 (PF) into promiscuous, but...

• Unknown MAC address from VF goes to wire, not to PF

FDB manipulation

kernel Intel 82599 (ixgbe)

eth0
PF

embedded switch

bridge

qemu

Guest 2

eth0_0

qemu

Guest 1

eth1

tap

MAC A MAC C

VF

MAC B

Dst. A

23 Copyright © 2015 NTT Corp. All Rights Reserved.

• Example: Intel 82599 (ixgbe)

• Type "bridge fdb add A dev eth0" on host

• Traffic to A will be forwarded to bridge

FDB manipulation

kernel Intel 82599 (ixgbe)

eth0
PF

embedded switch

bridge

qemu

Guest 2

eth0_0

qemu

Guest 1

eth1

tap

MAC A MAC C

VF

MAC B

Dst. A

add fdb entry

24 Copyright © 2015 NTT Corp. All Rights Reserved.

• 802.1Q Bridge

• Since kernel 3.9

• Filter packets according to vlan tag

• Forward packets according to vlan tag as well as mac
address

• Insert / strip vlan tag

VLAN filtering

kernel

eth0

bridge

eth1

MAC address Vlan Dst

aa:bb:cc:dd:ee:ff 10 eth0

...

FDB

filter disallowed vlan

insert / strip vlan tag

25 Copyright © 2015 NTT Corp. All Rights Reserved.

• Ingress / egress filtering policy

• Incoming / outgoing packet is filtered if matching
filtering policy

• Per-port per-vlan policy

• Default is "disallow all vlans"

• Since kernel 3.18, vid 1 is allowed by default

• All packets are dropped except for untagged or vid 1

VLAN filtering

kernel

eth0

bridge

eth1

filter by vlan
at ingress

filter by vlan
at egress

Port Allowed
Vlans

eth0 10

20

eth1 20

30

Filtering table

VID 10

allow 10 disallow 10

26 Copyright © 2015 NTT Corp. All Rights Reserved.

• PVID (Port VID)

• Untagged (and VID 0) packet is assigned this VID

• Per-port configuration

• Default PVID is 1 (Since kernel 3.18)

• Egress policy untagged

• Outgoing packet that matches this policy get untagged

• Per-port per-vlan policy

VLAN filtering

kernel

eth0

bridge

eth1

apply pvid
(insert vid 20)

apply untagged
(strip tag 20)

Port Allowed
Vlans

PVID Egress
Untag

eth0 10 ✔

20 ✔ ✔

eth1 20 ✔ ✔

30

Filtering table

untagged
packet

27 Copyright © 2015 NTT Corp. All Rights Reserved.

• Commands

• Enable VLAN filtering (disabled by default)

• Add / delete allowed vlan

• Set pvid / untagged

• Dump settings

• Note: bridge device needs "self"

VLAN filtering

echo 1 > /sys/class/net/<bridge>/bridge/vlan_filtering

bridge vlan add vid <vid> dev <port>
bridge vlan del vid <vid> dev <port>

bridge vlan add vid <vid> dev <port> [pvid] [untagged]

bridge vlan show

bridge vlan add vid <vid> dev br0 self
bridge vlan del vid <vid> dev br0 self

28 Copyright © 2015 NTT Corp. All Rights Reserved.

• Traditional configuration

• Use vlan devices

• Needs bridges per vlan

• Low flexibility

• How many devices?

VLAN with KVM

kernel
eth0

br10

tap1

qemu

Guest

eth0

tap0

qemu

Guest

eth0

br20

eth0.10 eth0.20

ifconfig -s
Iface ...
eth0
eth0.10
br10
eth0.20
br20
eth0.30
br30
eth0.40
br40
...

29 Copyright © 2015 NTT Corp. All Rights Reserved.

• With VLAN filtering

• Simple

• Flexible

• Only one bridge

VLAN with KVM

kernel
eth0

br0

tap1

qemu

Guest

eth0

tap0

qemu

Guest

eth0

pvid/untag
vlan 10

pvid/untag
vlan 20

vlan10 / 20

ifconfig -s
Iface ...
eth0
br0

30 Copyright © 2015 NTT Corp. All Rights Reserved.

• Other switches

• Open vSwitch

• Can also handle VLANs

• NIC embedded switch

• Some of them support VLAN (e.g. Intel 82599)

VLAN with KVM

ovs-vsctl set Port <port> tag=<vid>

ip link set <PF> vf <VF_num> vlan <vid>

31 Copyright © 2015 NTT Corp. All Rights Reserved.

• Limit mac addresses guest
can use

• Reduce FDB size
• Used with static FDB

entries
("bridge fdb" command)

• Disable FDB learning on
particular port
• Since kernel 3.11
• No dynamic FDB entry

• Don't flood unknown
mac to specified port
• Since kernel 3.11
• Control packet delivery to

guests

• Commands

Learning / flooding control

kernel eth0

bridge

tap1

qemu

Guest

eth0

tap0

qemu

Guest

eth0

no learning
no flooding

no learning
no flooding

learning
flooding

bridge link set dev <port> learning off
bridge link set dev <port> flood off

32 Copyright © 2015 NTT Corp. All Rights Reserved.

• Since kernel 3.16

• If there is only one
learning/flooding port,
it can be non-promisc

• Instead of promisc
mode, unicast filtering is
set for static FDB entries

• Automatically enabled if
meeting some conditions
• There is one or zero

learning or flooding port
• bridge itself is not

promiscuous mode
• VLAN filtering is enabled

Non-promiscuous bridge

kernel eth0

bridge

tap1

qemu

Guest

eth0

tap0

qemu

Guest

eth0

no learning
no flooding

no learning
no flooding

learning
flooding

non-promisc

33 Copyright © 2015 NTT Corp. All Rights Reserved.

• Since kernel 3.16

• 802.1ad allows stacked vlan tags

• Outer 802.1ad tag can be used to separate
customers
• Example: Guest A, B -> Customer X

 Guest C, D -> Customer Y

• Inner 802.1Q tag can be used inside customers
• Customer X and Y can use any 802.1Q tags

• Command

802.1ad (Q-in-Q) support for bridge

payload MAC .1ad tag .1Q tag

echo 0x88a8 > /sys/class/net/<bridge>/bridge/vlan_protocol

34 Copyright © 2015 NTT Corp. All Rights Reserved.

• Bridge preserves
guest .1Q tag (vid
30) when inserting
.1ad tag (vid 10)

• .1ad tag will be
stripped at
another end
point of .1ad
network

802.1ad (Q-in-Q) support for bridge

kernel
eth0

bridge (.1ad mode)

tap1

qemu

Guest A

eth0

tap0

qemu

Guest C

eth0

pvid/untag
vlan 10

pvid/untag
vlan 20

vlan10 / 20

.1Q VID 30

eth0.30

.1ad VID 10

.1Q VID 30

.1ad VID 10

.1Q VID 30

.1ad network
Customer's
another site

.1Q VID 30

35 Copyright © 2015 NTT Corp. All Rights Reserved.

Demo

36 Copyright © 2015 NTT Corp. All Rights Reserved.

• Let's setup non-
promiscuous KVM
environment!

• Steps

• Create bridge

• Enable vlan filtering

• Attach guests (by libvirt)

• Add FDB entries

• Set port attributes
(learning/flooding)

Non-promiscuous bridge

kernel eth0

bridge

vnet1

qemu

Guest

eth0

vnet0

qemu

Guest

eth0

no learning
no flooding

no learning
no flooding

learning
flooding

non-promisc

37 Copyright © 2015 NTT Corp. All Rights Reserved.

• Commands

• Create bridge

• Enable vlan filtering

• Attach guests

• Add FDB entries ("append" overwrites if exists)

• Set port attributes

Non-promiscuous bridge setup

echo 1 > /sys/class/net/br0/bridge/vlan_filtering

virsh start guest1
virsh start guest2

bridge fdb append 52:54:00:xx:xx:xx dev vnet0 master temp
bridge fdb append 52:54:00:yy:yy:yy dev vnet1 master temp

bridge link set dev vnet0 learning off flood off
bridge link set dev vnet1 learning off flood off

ip link add br0 up type bridge
ip link set eth0 master br0

38 Copyright © 2015 NTT Corp. All Rights Reserved.

• libvirt (>= 1.2.11 with kernel >= 3.17) can
automatically handle these settings

• Network XML

Non-promiscuous bridge via libvirt xml

virsh net-edit <network>
...
 <bridge name="br0" macTableManager="libvirt"/>
...

39 Copyright © 2015 NTT Corp. All Rights Reserved.

• Filter FDB dump per bridge/port (Since 3.17)

• Filter per bridge

• Filter per port

• VLAN range (Coming soon... 3.20?)

• Add vlans

• Show vlans in compressed format

Some more useful commands...

bridge fdb show br <bridge>

bridge fdb show brport <port>

bridge vlan add vid <vid_begin>-<vid_end> dev <port>

bridge -c vlan show

40 Copyright © 2015 NTT Corp. All Rights Reserved.

• Linux has several types of switches

• bridge, macvlan (macvtap), Open vSwitch

• SR-IOV NIC enbedded switch can also be used

• Bridge's recent features

• FDB manipulation

• VLAN filtering

• Learning / Flooding control

• Non-promiscuous bridge

• 802.1ad (Q-in-Q) support

Summary

