

Linux Traffic Control
Classifier-Action Subsystem

Architecture

Jamal Hadi Salim
Netdev 0.1, Ottawa, On

Motivation

● Finally Document
● Hopefully have people use and build on top

(as opposed to re-invent)

Life Starts With A Port...

Network
Stack

● And Packets cometh...
● And Packets goeth...

Linux Datapath

● The main packet mangling hooks are traffic
control and netfilter

● We will focus on traffic control

Traffic Control Hierarchy

● Note: Ingress side does not have a class(queues)
● Our focus is on Classifiers and Actions

● We will refer to those two as CA

Early History

● Alexey Kuznetsov is the originator of TC and most of the
architecture as it stands right now
– Much of the flexibility and beauty

– Initial patches around kernel 2.1

● Werner Almesberger did a lot of formative work (many
things: classifiers, qdiscs, general education)

● Jamal created the “A” part of “CA” (and current maintainer)
● DaveM who was actively involved in those days

Classifiers

● Classifiers hold filters which segregate traffic
– Built-in default classifier based on protocol

● Many different types of classifiers
– No such thing as a universal classifier

– Each does something they are good at
● Unix philosophy

– Types can be mixed and matched when creating policies

● Example of classifiers
– U32, fw, route, rsvp, basic, bpf, flow, openflow, etc

● Example u32 could be used to build an efficient tree for packet lookup
based on chunks of 32-bit packet blocks

● Route is efficient with IP based route attributes

U32 Classifier

TC Classifier-Actions

● Packet + Metadata exchanged between the 2 blocks
● Can create a policy graph made of filters and actions

● Graph flow is programmable at both blocks
● Programming Constructs and flow control:

statement, if, else, while, goto, continue, end

Classifier
Block

Action Block

P+M

CA Programmatic Flow Control

● Priority arrangement of rule predicates is equivalent to if/else if/else
● Rules of the same protocol are grouped by priority
● Each rule maybe a totally different classifier algorithm

Classifier Flow Control

● Continue construct (contributes to if/else branching)
● Essentially continue onto next classifier rule

● Useful for having default policies and overriding rules
● reclassify construct (jump-back operation)

● Useful for adding or removing tunnel headers
● It means start the classification again

● All other constructs(Accept/Drop/Steal) terminate the pipeline

Anatomy of a Classifier Block
Branching

rule using
classifier

A
priority X

Rule using
classifier

B
Priority X

Rule using
classifier

B
Prio X+1

Rule using
classifier

C
Prio X+2

Reclassify: says to restart the classification

Continue: says to continue the classification

Ambiguity resolution upto to admin
- Rules are sorted by priorities
- When priority equal then

=> last entered rule more important

If ...
else if ..
else ...

Example classifier branching

classifier
Fw

proto IP
Match mark 3

priority 1

classifier
U32

Proto IP
Match icmp

Priority 2

Classifier
basic

Proto IP
Match text “foo”

Prio 3

classifier
Route

Match realm X
Priority 4

Reclassify: says to restart the classification

Continue: says to continue the classification

Actions

● Do one small thing they are good at
– Unix philosophy

● Typically the attributes of each instance of a
specific action sit in a table row
– Creation from the control plane is equivalent to

adding a table row

Actions

● Many actions exist
– nat, checksum, TBF policing, generic action (drop/accept),

arbitrary packet editor, mirroring, redirect, etc

● Each action instance maintains its own private state which
is typically updated by arriving packets

● Each action instance carries attributes and statistics
● An action instance can be shared across more than one

service graph

TC Actions: Simple chain

● Actions policy chain using using pipe construct
(emulating the unix | operator)
● i.e pipe a packet across actions

● As in Unix pipe chain can conditionally be
terminated earlier by any action

● Action state, packet Drop, Packet Acceptance, Packet stealing

P+M P+M P+M P+M P+M

Actions: Branching Control

● if and else conditions programmed in action instance
● Any action could conditionally repeat (REPEAT)

● Loop construct

A Simple Program

A Simple Program: Functional View

Summary: Classifier-Action
Pipeline

Action Programmatic Control
● Stolen/Queued (end CA pipeline)
● DROP (end CA pipeline)
● ACCEPT (end CA pipeline)
● PIPE (iterate next action)
● CONTINUE (end Action pipeline)
● RECLASSIFY (end Action pipeline)
● REPEAT (restart action processing)
● JUMPx (jump X actions in pipeline)

Classifier Programmatic control
● CONTINUE (iterate next rule)
● RECLASSIFY (restart pipeline)
● All others (end CA pipeline)

Sharing Actions: IMQ

Aging of Policies

● All Actions keep track of when they were
installed and last used

● Control side can use this info to implement
aging algorithms

Late Binding

● Action instances can be created
● Later bound to policies

Distributing CA

Future Work

● More Classifiers and Actions of course
● Functional discovery
● Usability

– tcng effort by Werner

– Programmability extension into higher level
language (python, lua etc)

Future Work: Hardware Offload

Realtek RTL8366xx

Lets Write Some Programs

Counting Packets To A Host

● Goal: get acquinted with the control setup via CLI
● Ping google.com
● Show statistics

Network
Stack

Egress
Port

(eth1)

U32 rule prio 10
match dest = google.com

Action BlockClassifier Block

Accept

Counting Packets To/From A Host

● Goal: get acquinted with the control setup via CLI
● Ping google.com
● Show statistics

Network
Stack

Egress
Port

(eth1)

U32 rule prio 10
match dest = google.com

Accept
Index 12

Ingress
Port

(eth1)
U32 rule prio 10

match src = google.com
Accept
Index 2

Counting Packets To/From A Host
Shared Action Instance

● Goal: A little more complex setup (sharing action instance)
● Ping google.com and show statistics
● Broken for ubuntu shipped kernels and iproute2

Network
Stack

Egress
Port

(eth1)

U32 rule prio 10
match dest = google.com

Accept
Index 12

Ingress
Port

(eth1)
U32 rule prio 10

match src = google.com
Accept
Index 12

More Complex Service

● Goal: Illustrate a more complex service
– More complex action graph

● Broken for ubuntu shipped kernels and
iproute2

Ingress
Port

(eth1)

U32 rule prio 10
If match packet == icmp skbedit

Mark 11

Network
Stack

police
10kbps

skbedit
Mark 12

police
20kbps

If exceeded

else !exceeded else !exceeded

copy to
dummy0

1

If exceeded

2

egress
Port

(dummy0)

More Complex Service
Shared Rate control

Ingress
Port

(eth1)

U32 rule prio 10
If match packet == icmp skbedit

Mark 11

Network
Stack

police
10kbps
Index 1

skbedit
Mark 12

police
20kbps
Index 2

If exceeded

else !exceeded else !exceeded

copy to
dummy0

1

If exceeded

2

egress
Port

(dummy0)

Ingress
Port
(lo)

U32 rule prio 10
If match packet == icmp skbedit

Mark 21

police
10kbps
Index 1

skbedit
Mark 22

police
20kbps
Index 2

copy to
dummy1

egress
Port

(dummy1)

2

1

else !exceeded

If exceeded

If exceeded

else !exceeded

	Slide 1
	Slide 2
	Slide 3
	Slide 7
	Slide 10
	Slide 11
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

