
Network Performance Workshop, NetDev 1.21

Part of:

Network Performance Workshop
Memory bottlenecks

Jesper Dangaard Brouer
Principal Engineer, Red Hat

Date: April 2017
Venue: NetDevConf 2.1, 
Montreal, Canada



Network Performance Workshop, NetDev 1.22

Memory vs. Networking

● Network provoke bottlenecks in memory allocators
● Lots of work needed in MM-area

● SLAB/SLUB area
● Basically done via bulk APIs

● Page allocator current limiting XDP 
● Baseline performance too slow
● Drivers implement page recycle caches

● Can we generalize this?
● And integrate this into page allocator?



Network Performance Workshop, NetDev 1.23

Cost when page order increase (Kernel 4.11-rc1)

Order-0 Order-1 Order-2 Order-3 Order-4 Order-5 Order-6
0

200

400

600

800

1000

1200

Cycles
Cycles per 4K
10G budget

● Page allocator perf vs. size

● Per CPU cache order-0

● No cache > order-0

● Order to size:

● 0=4K, 1=8K, 2=16K

● Yellow line

● Amortize cost per 4K

● Trick used by some drivers

● Want to avoid this trick:

● Attacker pin down memory

● Bad for concurrent workload

● Reclaim/compaction stalls



Network Performance Workshop, NetDev 1.24

Issues with: Higher order pages

● Performance workaround:
● Alloc larger order page, handout fragments

● Amortize alloc cost over several packets

● Troublesome
● 1. fast sometimes and other times require 

reclaim/compaction which can stall for prolonged 
periods of time.

● 2. clever attacker can pin-down memory
● Especially relevant for end-host TCP/IP use-case

● 3. does not scale as well, concurrent workloads



Network Performance Workshop, NetDev 1.25

Driver page recycling

● All high-speed NIC drivers do page recycling
● Two reasons:

● 1. page allocator is too slow
● 2. Avoiding DMA mapping cost

● Different variations per driver
● Want to generalize this

● Every driver developer is reinventing a page recycle mechanism



Network Performance Workshop, NetDev 1.26

Page pool: Generic recycle cache

● Basic concept for the page_pool
● Pages are recycled back into originating pool

● At put_page() time

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls



Network Performance Workshop, NetDev 1.27

The end

● kfree_bulk(7, slides);



Network Performance Workshop, NetDev 1.28

Page pool: Generic solution, many advantages

● 5 features of a recycling page pool (per device):

1)Faster than page-allocator speed
● As a specialized allocator require less checks

2)DMA IOMMU mapping cost removed
● Keeping page mapped (credit to Alexei)

3)Make page writable
● By predictable DMA unmap point

4)OOM protection at device level
● Feedback-loop know #outstanding pages

5)Zero-copy RX, solving memory early demux
• Depend on HW filters into RX queues


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

