Advanced programmability and recent updates
with tc's cls_bpf.

Daniel Borkmann
<daniel@iogearbox.net>
Noiro Networks / Cisco Systems

netdev 1.2, Tokyo, October 6, 2016

netdev 1.1 talk: part 1, this talk: part 2
Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

1/13

Big Picture: eBPF and cls bpf

m eBPF: efficient, generic in-kernel bytecode engine
m Today used mainly in networking, tracing, sandboxing
m tc, XDP, socket filters/demuxing, perf, bcc, seccomp, LSM, ...
m cls_bpf programmable classifier and action in tc subsystem
m Attachable to ingress, egress of kernel's networking data path
m C - LLVM — eBPF - ELF — tc — verifier » JIT — cls_bpf — offload
m cls_bpf complementary to XDP

m Attachable to all net devices
m skb as input context

m Applicable to ingress, egress

user space, kernel space
Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016 2/13

eBPF Architecture

m 11 64bit registers, 32bit subregisters, stack, pc

m Instructions 64bit wide, max 4096 instructions/program

m Various new instructions over cBPF

m Core components of architecture

Read/write access to context
Helper function concept
Maps, arbitrary sharing

Tail calls

Object pinning

cBPF to eBPF translator
LLVM eBPF backend

m eBPF JIT backends implemented by archs

m Management via bpf (2), stable ABI

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

3/13

cls bpf and sch clsact

m sch_clsact container for tc classifier and actions
m Provides two central hooks in data path

m Ingress: _netif receive_skb_core()

m Egress: __dev_queue xmit()

cls_bpf runs eBPF, allows for atomic updates

Fast-path with direct-action (da) mode

m Verdicts: ok, shot, stolen, redirect, unspec

m Offload interface implementable by drivers
m tc eBPF frontend as ELF loader

m Parsing of sections
m Relocation handling

m Object pinning/retrieving

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016 4/13

Usage Example: Setup and Teardown

(Example code: see paper, kernel/iproute2 samples)
$ clang -02 -target bpf -o foo.o -c foo.c

tc qdisc add dev eml clsact
tc qdisc show dev eml

[...]
qdisc clsact ffff: parent ffff:fffl

tc filter add dev eml ingress bpf da obj foo.o sec pil
tc filter add dev eml egress bpf da obj foo.o sec p2

tc filter show dev eml ingress (or egress)
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle Oxl foo.o:[pl] direct-action

tc filter del dev eml ingress
tc filter del dev eml egress

tc qdisc del dev eml clsact

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016 5/13

Tunneling and Encapsulation

m Scalable support through collect metadata interface
m vxlan, geneve, gre, ipip, ipip6, ipbip6

m Key is translated from BPF representation into tunnel info
m id, v4/v6 dst ip, tos, ttl, label, flags (csum, proto, frag)

Option is passed as raw blob

m vxlan gbp, geneve TLVs
m RX via struct metadata_dst from skb
m TX as per-CPU struct metadata_dst temporarily set to skb

m eBPF helpers

m bpf_skb_{get,set} _tunnel key()
m bpf_skb_{get,set} tunnel opt ()

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

6/13

Direct Packet Access

m Available methods prior to direct packet access
m BPF_LD|BPF_ABS and BPF_LD|BPF_IND

Carried over from cBPF

LLVM built-in helper: asm("1lvm.bpf.load.byte"),
1, 2, 4 byte load into register

Host endianess

Suboptimal exception handling

Fast path implemented by JITs

Slow path call for non-linear data, negative offsets

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

7/13

Direct Packet Access

m Available methods prior to direct packet access
m BPF_LD|BPF_ABS and BPF_LD|BPF_IND
m Carried over from cBPF
LLVM built-in helper: asm("1lvm.bpf.load.byte"),
1, 2, 4 byte load into register

[]
m Host endianess

m Suboptimal exception handling
[]

Fast path implemented by JITs

Slow path call for non-linear data, negative offsets
m bpf_skb_load bytes()
m Helper wrapper for skb_header _pointer()
m Therefore no JIT/LLVM/endianess special handling
m 1-X byte load into stack space
m Limited by eBPF stack space itself
m Exception handling possible

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016 7/13

Direct Packet Access

m Available methods prior to direct packet access
m bpf_skb_store bytes()

m Helper call, thus same properties as bpf_skb_load_bytes()
m Unclones skb, pulls in non-linear data if needed

m Flags for csum update, clearing hash

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

8/13

Direct Packet Access

m Available methods prior to direct packet access
m bpf_skb_store bytes()
m Helper call, thus same properties as bpf_skb_load_bytes()
m Unclones skb, pulls in non-linear data if needed
m Flags for csum update, clearing hash
m Direct packet access
m Combining advantages of both
New data, data_end members for skb context
Loaded into register, access skb—data directly
No JIT/LLVM special handling needed
Complexity rather pushed into verifier, not runtime
Matches on data + X vs. data_end test, tracks ranges

Implicit exception handling from branches

Write part strictly uncloned, helper for non-linear data

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

8/13

Event Output/Notifications

m ldea: event push mechanism from kernel — user space direction

m Per-cpu lockless mmap (2) ring buffer from perf infrastructure

Busy-poll or possible wake-up defineable for #events, #bytes

Ring buffer slot layout fully programmable, not part of uapi

Use-cases: sampling, monitoring, debugging, management daemons
m Used in cilium project as

m Drop monitor for policy learning
m Packet tracing infrastructure

m bpf_trace_printk() replacement

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016 9/13

JITs, Offload, Hardening

m Available as of today: x86_64, arm64, ppc64, s390

ppc64: initial JIT merged and tail call support added

m arm64: tail call support, various optimizations, xadd still missing
m Offloading of cls_bpf with eBPF to NIC
m Supported by Netronome SmartNICs via JIT (Jakub's, Nic's talk?)

Various hardening measures done by default (RO, rand gap)

Constant blinding infrastructure: net.core.bpf_jit_harden=1
m Blinding for non-root programs enabled
m Rewriting 32/64bit constants generically at BPF instruction level

m imm — ((rnd @ imm) @© rnd), inSjmm — inS,e

1"eBPF/XDP hardware offload to SmartNICs”, netdev 1.2
Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016 10 /13

Constant Blinding

m x86_64 JIT example for BPF_LD | BPF_IMM:

b8 XX YY ZZ a8 mov $0xa8ZZYYXX, Y%eax
b8 PP QQ RR a8 mov $0xa8RROQPP, Yeax
b8 ...

m Off-by-one jump ...

XX YY ZZ payload insn
a8 b8 test $0xb8, %al
PP QQ RR payload insn
a8 b8 test $0xb8, %al

m Blinded, mov case rewritten as mov/xor/mov, e.g.

41 ba 63 25 19 el mov $0xel1192563,%r10d
41 81 f2 £3 b5 89 49 xor $0x4989b5f3,%r10d
44 89 dO mov %ri10d,%eax

Daniel Borkmann

o
o

, cls_bpf and eBPF October 6, 2016

1/13

Summary on Functionality

m __sk buff context as mapper for skb metadata access

m Various helpers available for cls_bpf, main areas:

Packet access and mangling
Map (e.g. per cpu, prealloced) access
Checksum mangling
Redirection /forwarding
Cgroups v1/v2 integration
Encapsulations

Protocol migration (v4/v6)
Packet size mangling

Event output, debugging
Routing realms

Tail call invocation

Misc things (hash, cpu, random, ktime, etc)

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

12/13

Thanks!

m Couple of next steps
m Collect metadata-like API for crypto integration
m Verifier logging improvements, code annotations
m Better introspection facilities, code signing, etc
m Integration into kernel selftesting framework

m Get documentation closer to implementation status
m Code

m git.kernel.org — kernel, iproute2 tree
m cilium project: github.com/cilium
m BPF & XDP for containers
m Further information
m netdevl.l, netdevl.2 paper on cls_bpf
m Kernel tree: Documentation/networking/filter.txt
m Man pages: bpf (2), tc-bpf (7)

Daniel Borkmann tc, cls_bpf and eBPF October 6, 2016

13/13

git.kernel.org
github.com/cilium
Documentation/networking/filter.txt

