
Advanced programmability and recent updates
with tc’s cls bpf.

Daniel Borkmann
<daniel@iogearbox.net>

Noiro Networks / Cisco Systems

netdev 1.2, Tokyo, October 6, 2016

netdev 1.1 talk: part 1, this talk: part 2
Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 1 / 13

Big Picture: eBPF and cls bpf

eBPF: efficient, generic in-kernel bytecode engine
Today used mainly in networking, tracing, sandboxing

tc, XDP, socket filters/demuxing, perf, bcc, seccomp, LSM, ...

cls bpf programmable classifier and action in tc subsystem

Attachable to ingress, egress of kernel’s networking data path

C � LLVM � eBPF � ELF � tc � verifier � JIT � cls bpf � offload
cls bpf complementary to XDP

Attachable to all net devices
skb as input context
Applicable to ingress, egress

user space, kernel space
Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 2 / 13

eBPF Architecture
11 64bit registers, 32bit subregisters, stack, pc
Instructions 64bit wide, max 4096 instructions/program
Various new instructions over cBPF
Core components of architecture

Read/write access to context
Helper function concept
Maps, arbitrary sharing
Tail calls
Object pinning
cBPF to eBPF translator
LLVM eBPF backend

eBPF JIT backends implemented by archs
Management via bpf(2), stable ABI

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 3 / 13

cls bpf and sch clsact

sch clsact container for tc classifier and actions
Provides two central hooks in data path

Ingress: netif receive skb core()

Egress: dev queue xmit()

cls bpf runs eBPF, allows for atomic updates
Fast-path with direct-action (da) mode

Verdicts: ok, shot, stolen, redirect, unspec

Offload interface implementable by drivers
tc eBPF frontend as ELF loader

Parsing of sections
Relocation handling
Object pinning/retrieving

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 4 / 13

Usage Example: Setup and Teardown
(Example code: see paper, kernel/iproute2 samples)
$ clang -O2 -target bpf -o foo.o -c foo.c

tc qdisc add dev em1 clsact
tc qdisc show dev em1
[...]
qdisc clsact ffff: parent ffff:fff1

tc filter add dev em1 ingress bpf da obj foo.o sec p1
tc filter add dev em1 egress bpf da obj foo.o sec p2

tc filter show dev em1 ingress (or egress)
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 foo.o:[p1] direct-action

tc filter del dev em1 ingress
tc filter del dev em1 egress

tc qdisc del dev em1 clsact

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 5 / 13

Tunneling and Encapsulation

Scalable support through collect metadata interface
vxlan, geneve, gre, ipip, ipip6, ip6ip6

Key is translated from BPF representation into tunnel info
id, v4/v6 dst ip, tos, ttl, label, flags (csum, proto, frag)

Option is passed as raw blob
vxlan gbp, geneve TLVs

RX via struct metadata dst from skb

TX as per-CPU struct metadata dst temporarily set to skb

eBPF helpers
bpf skb {get,set} tunnel key()

bpf skb {get,set} tunnel opt()

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 6 / 13

Direct Packet Access
Available methods prior to direct packet access

BPF LD|BPF ABS and BPF LD|BPF IND

Carried over from cBPF
LLVM built-in helper: asm("llvm.bpf.load.byte"), ...

1, 2, 4 byte load into register
Host endianess
Suboptimal exception handling
Fast path implemented by JITs
Slow path call for non-linear data, negative offsets

bpf skb load bytes()

Helper wrapper for skb header pointer()

Therefore no JIT/LLVM/endianess special handling
1-X byte load into stack space
Limited by eBPF stack space itself
Exception handling possible

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 7 / 13

Direct Packet Access
Available methods prior to direct packet access

BPF LD|BPF ABS and BPF LD|BPF IND

Carried over from cBPF
LLVM built-in helper: asm("llvm.bpf.load.byte"), ...

1, 2, 4 byte load into register
Host endianess
Suboptimal exception handling
Fast path implemented by JITs
Slow path call for non-linear data, negative offsets

bpf skb load bytes()

Helper wrapper for skb header pointer()

Therefore no JIT/LLVM/endianess special handling
1-X byte load into stack space
Limited by eBPF stack space itself
Exception handling possible

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 7 / 13

Direct Packet Access
Available methods prior to direct packet access

bpf skb store bytes()

Helper call, thus same properties as bpf skb load bytes()

Unclones skb, pulls in non-linear data if needed
Flags for csum update, clearing hash

Direct packet access
Combining advantages of both

New data, data end members for skb context
Loaded into register, access skb→data directly
No JIT/LLVM special handling needed
Complexity rather pushed into verifier, not runtime
Matches on data + X vs. data end test, tracks ranges
Implicit exception handling from branches
Write part strictly uncloned, helper for non-linear data

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 8 / 13

Direct Packet Access
Available methods prior to direct packet access

bpf skb store bytes()

Helper call, thus same properties as bpf skb load bytes()

Unclones skb, pulls in non-linear data if needed
Flags for csum update, clearing hash

Direct packet access
Combining advantages of both

New data, data end members for skb context
Loaded into register, access skb→data directly
No JIT/LLVM special handling needed
Complexity rather pushed into verifier, not runtime
Matches on data + X vs. data end test, tracks ranges
Implicit exception handling from branches
Write part strictly uncloned, helper for non-linear data

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 8 / 13

Event Output/Notifications

Idea: event push mechanism from kernel → user space direction

Per-cpu lockless mmap(2) ring buffer from perf infrastructure

Busy-poll or possible wake-up defineable for #events, #bytes

Ring buffer slot layout fully programmable, not part of uapi

Use-cases: sampling, monitoring, debugging, management daemons
Used in cilium project as

Drop monitor for policy learning
Packet tracing infrastructure
bpf trace printk() replacement

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 9 / 13

JITs, Offload, Hardening

Available as of today: x86 64, arm64, ppc64, s390

ppc64: initial JIT merged and tail call support added

arm64: tail call support, various optimizations, xadd still missing
Offloading of cls bpf with eBPF to NIC

Supported by Netronome SmartNICs via JIT (Jakub’s, Nic’s talk1)

Various hardening measures done by default (RO, rand gap)
Constant blinding infrastructure: net.core.bpf jit harden=1

Blinding for non-root programs enabled
Rewriting 32/64bit constants generically at BPF instruction level
imm → ((rnd ⊕ imm) ⊕ rnd), insimm → insreg

1”eBPF/XDP hardware offload to SmartNICs”, netdev 1.2
Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 10 / 13

Constant Blinding
x86 64 JIT example for BPF LD|BPF IMM:

b8 XX YY ZZ a8 mov $0xa8ZZYYXX, %eax
b8 PP QQ RR a8 mov $0xa8RRQQPP, %eax
b8 ...

Off-by-one jump ...
XX YY ZZ payload insn
a8 b8 test $0xb8, %al
PP QQ RR payload insn
a8 b8 test $0xb8, %al
...

Blinded, mov case rewritten as mov/xor/mov, e.g.
41 ba 63 25 19 e1 mov $0xe1192563,%r10d
41 81 f2 f3 b5 89 49 xor $0x4989b5f3,%r10d
44 89 d0 mov %r10d,%eax
...

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 11 / 13

Summary on Functionality
sk buff context as mapper for skb metadata access

Various helpers available for cls bpf, main areas:
Packet access and mangling
Map (e.g. per cpu, prealloced) access
Checksum mangling
Redirection/forwarding
Cgroups v1/v2 integration
Encapsulations
Protocol migration (v4/v6)
Packet size mangling
Event output, debugging
Routing realms
Tail call invocation
Misc things (hash, cpu, random, ktime, etc)

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 12 / 13

Thanks!
Couple of next steps

Collect metadata-like API for crypto integration
Verifier logging improvements, code annotations
Better introspection facilities, code signing, etc
Integration into kernel selftesting framework
Get documentation closer to implementation status

Code
git.kernel.org → kernel, iproute2 tree
cilium project: github.com/cilium

BPF & XDP for containers

Further information
netdev1.1, netdev1.2 paper on cls bpf
Kernel tree: Documentation/networking/filter.txt
Man pages: bpf(2), tc-bpf(7)

Daniel Borkmann tc, cls bpf and eBPF October 6, 2016 13 / 13

git.kernel.org
github.com/cilium
Documentation/networking/filter.txt

