
Linux Forwarding Stack
Fastpath

Nishit Shah & Jagdish Motwani
Netdev 1.2, Tokyo, Japan

Agenda

2

• Objectives & Challenges

• Proposed Solution

• Stateful Firewall With Proposed Solution

• Performance Numbers

• Future Work / Discussion

• Q & A

Objective & Challenges

Objective & Challenges

4

• Focus of this work is on linux deployments as routers/firewalls and ideas to
improve throughput of forwarding path

• There has been a lot of work going on in the area of linux networking
throughput enhancements. Frameworks studied,

o Netchannel (https://lwn.net/Articles/169961/)

o Packet Shader (shader.kaist.edu/packetshader/io_engine/index.html)

o Intel DPDK (dpdk.org/)

o Netmap (info.iet.unipi.it/~luigi/netmap/)

https://lwn.net/Articles/169961/
http://shader.kaist.edu/packetshader/io_engine/index.html
http://dpdk.org/
http://info.iet.unipi.it/~luigi/netmap/

Objective & Challenges

5

• Fast Packet Processing Techniques
o I/O Batching

o Pre-allocated packet buffers

o Packet processing without skb (meta-data) allocation

o Forward cache prefetching

o Reduce Locking / Lockless operations

o Memory mapped buffers

• These frameworks are talking about moving the stuff into user-space
o This might look good for server application(s)

o Not a practical choice for routers/firewalls as it requires network stack to be
written/ported in userspace (Linux is already there)

Proposed Solution

Proposed Solution

7

• Proposal is to integrate and enhance networking stack with the fast packet
processing techniques mentioned earlier

• In order to evaluate these techniques, we started comparing network stack
with a similar application running on Netmap/DPDK
o A linux device was configured as a simple router by keeping only require modules

and unloading other modules

o When this was compared with a Netmap/DPDK application, there was a good
amount of difference between them

Proposed Solution – Fastpath

8

• As a first step, instead of using standard Rx/Tx path, we used Netmap rings
o having pre-allocated rx/tx buffers and batch I/O capabilities

o To use the Netmap rings, network interface card is required to be put in Netmap mode (A
small patch in driver is required to support Netmap) in which kernel will see the interface
using normal netdevice structure but rx/tx functions are disconnected from network stack

• On Receive side, Netmap framework adds a hook (netmap_rx_irq) in driver’s napi
callback, that is used to wake up the userspace process, which in turns calls the
netmap_rxsync function to receive the packets in the Netmap ring

• In order to transmit the packet, the application fills Netmap’s tx-ring and calls
netmap_txsync that in turn calls driver specific Tx function

Proposed Solution – Fastpath

9

• In the modified approach, instead of waking up the userspace process from
napi callback, netmap_rxsync is called to get the packets in netmap ring
and packets are processed in kernel space

• For each received packet in the batch, a top level fastpath function
(do_fastpath) is called, which does the routing lookup using packet data

• Respective functions of routing code are modified to use packet data
instead of skb structure

• On Transmit side, only the packet pointers are moved from rx-rings to tx-
rings, transmit signals are issued to NIC for batch mode transmit through
netmap_txsync function

10

Figure: Modified
Packet RX/TX

11

Figure: do_fastpath
function

Proposed Solution – Co-existence with network stack

12

• As we are in kernel, kernel stack is used for packets which are,
o Either not supported/ported on fastpath (i.e. ARP packets, Fragmented packets,

Packets without valid neighbour cache entry etc.)

o Or not required to be moved on fastpath (i.e. Control plane traffic)

o For such packets, skbs are allocated, data is copied & respective stack functions are
called

• For device originated control plane traffic, Netmap changes the driver
specific transmit function to netmap_transmit. This function is modified to
copy the skb data into netmap tx-ring, followed by call to netmap txsync
function to transmit the packet

Proposed Solution – Forward Cache Prefetching

13

• While going through some sample applications of DPDK, we saw the use of
forward cache prefetching

• As we have batch of packets in Netmap rings, forward prefetching can be
used here. That is,
o On having N packets in NAPI callback,
o Prefetch first 3 packets
o Process 1st packet & prefetch 4th packet, process 2nd packet & prefetch 5th packet

and so on until Nth packet

• It has helped significantly on x86 and x86_64 platforms where DDIO is not
supported

Stateful Firewall with Fastpath

14

• Like we converted routing code to use packet data instead of skb, we also
modified connection tracking and NAT code in the same way

• From do_fastpath function, conntrack lookup has been done and if it was
the first packet of a connection, it was sent to network stack to complete
the full journey

• CONNMARK target was used in iptables rules to set FAST_PATH mark to
indicate the connection in fastpath

• For all subsequent packets of the same connection, FAST_PATH mark was
checked during conntrack lookup and if set, it was transmitted through
fastpath

Stateful Firewall – Avoiding Two Lookups

15

• Florian Westphal proposed a patch[3] “[RFC] netfilter: conntrack: cache
route for forwarded connections” that caches dst entries in conntrack
structure

• Using it, we avoided route lookups once we do the connection lookups in
fastpath

16

Figure: Firewall
Fastpath

Performance Numbers

Performance Numbers

18

• Table shows some performance numbers taken on linux kernel version 3.14

• Results were taken on a single core of Intel(R) Xeon(R) CPU E5-2680
v3@2.50GHz processor with two 10G ports connected to Ixia Breaking
point systems

UDP (Packet Size) Stateful Firewall Stateful Firewall
With Fastpath

% Improvement

64 bytes 645 Mbps
1320960 pps

3114 Mbps
6377472 pps

4.8x

128 bytes 1155 Mbps
1182720 pps

6240 Mbps
6389760 pps

5.4x

256 bytes 2165 Mbps
1108480 pps

11690 Mbps
5985280 pps

5.3x

512 bytes 4170 Mbps
1067520 pps

20000 Mbps
5120000 pps

4.7x*

Future Work / Discussion

19

• Packet/Buffer holding support in Netmap rings

• Avoid data copies when sending packets to kernel network stack (Jesper’s
page-pool)

• XDP (eXpress Data Path) Possibility

• Fastpath Porting: xfrm, bridge, iptables/ipset/nftables, QoS

Thank You

