
v

Network Interface Configuration on a Linux NOS

Roopa Prabhu— Cumulus Networks

Netdev 1.2, October 6th, 2016

Agenda

● Context and background
● Linux based NOS vs Linux as your NOS
● Network Interface management characteristics
● Network Interface management on a Linux NOS
● Search for a network interface manager for a Linux NOS
● ifupdown2
● Examples

Context and Background..

● Building a Linux OS distribution for routers and switches
just like your server Linux distribution

● Leverage existing Linux ecosystem and tools
● Leverage existing automation tools: Make your network

OS provisioning similar to your servers
● Goals of a network interface manager ?

○ Make network interface management painless and
easy

○ Provision your network interfaces in the same way on
servers and switches

Linux based NOS vs Linux as your NOS

Linux based NOS:
● Base Linux OS with vendor

modifications
● Mostly closed boxes
● Proprietary API
● You almost never see the

Linux behind it

Linux as your NOS:
● Linux as you see on

servers + seamless
hardware acceleration
with switch asics

● Open boxes
● Open Linux networking

API (Netlink)
● Leverage existing Linux

ecosystem
● Automate like servers!

Characteristics of Linux network interface configuration

● Desktop and mobile operating system distributions:
○ Optimized for dynamic and changing networks

● Hypervisor and Container Operating system distributions:
○ Optimized for dynamic provisioning of networks for containers coming

and going away
○ Networking parameters and attributes attached to a container or vm by

orchestration tools
● Network Operating System distributions:

○ Mostly Static
○ Cookie cutter:

■ Eg: configure trunk vlans on all ports, configure all ports to 10G
○ Scale:

■ Large number of ports and large number of networking attributes
● Eg: addresses, stp, igmp, vlans,

Our Goal for a network interface manager...

● Unify network interface management on servers and switches
○ All linux distributions use the same kernel netlink API or tools

● Keep it extensible with addon plugin modules for network configuration

● Optimize for a user-base using policies:
○ System policies:

■ Eg: Default system supported speed on an interface
○ User defined policies

■ Eg: vrf hooks, mtu

In search of a network interface manager for a Linux NOS...

● Requirements:
○ leverage existing Linux tools + API, Extensible, templatable
○ Already known to automation tools

● Started with Debian’s ifupdown ….and currently at ifupdown2

● Ifupdown is a network interface manager on Debian
(/etc/network/interfaces!)
○ https://packages.debian.org/jessie/admin/ifupdown

● Ifupdown2 is ifupdown optimized for a network operating system
○ https://github.com/CumulusNetworks/ifupdown2
○ https://packages.debian.org/sid/ifupdown2

ifupdown2

ifupdown2 template example

configure 1000 vlan devices on
eth0
%for v in range(1, 1000):
auto eth0.${v}
iface eth0.${v}
%endfor

● Backward compatible with
ifupdown interfaces format
and commands

▪ Continues to use
/etc/network/interfaces

▪ Understands interface
dependencies

▪ Pluggable architecture:
add-on python modules for
interface configuration

▪ Interface configuration is
templatable

Next few slides ...

● Network interface configuration examples on a NOS

● ifupdown2 examples

● Default policies for a NOS where applicable

Physical ports and link attributes

cumulusnetworks.com

Attributes:
● speed, duplex, autoneg setting using

ethtool
● mtu, protodown using iproute2

Policies:

● System port manager policy to always
set ‘autoneg on’ if port is 1G

/etc/network/interfaces example

auto swp1

Iface swp1

link-speed 10000

link-duplex full

link-autoneg off

mtu 9000

hwaddress 00:02:0a:0b:0c:0d

L3 attributes

Attributes:
● address and static route

configuration using iproute2 or
direct netlink API to kernel

Policies:
● policy to purge or not purge existing

addresses (useful when address
configuration is owned by multiple
entities in the system)

/etc/network/interfaces example

auto swp1
iface swp1

address 10.99.1.1/30
post-up ip route add 10.1.2.0/24 via

10.99.1.2

Bonding or Link aggregation

/etc/network/interfaces example

auto bond0

iface bond0

bond-slaves glob swp1-3

bond-mode 802.3ad

auto bridge

iface bridge

bridge-ports swp1 bond0

● Bond creation and configuration
using iproute2, sysfs and direct
netlink API to kernel

Bonding or Link aggregation: policy

 System policy:

● restrict bond modes to network switch hardware link aggregation modes

Bridging

● Bridge attributes to indicate vlan
filtering (vlan aware) bridge

● Easier ways to indicate range of ports

/etc/network/interfaces example

auto bridge

iface bridge

 bridge-vlan-aware yes

 bridge-ports glob swp1-3

 bridge-stp on

 bridge-vids 310 700 707 712 850 910

Bridging Contd

● Access port: sends and receives
untagged ports (bridge-access)

● Trunk port: sends and receives tagged
ports and able to switch multiple vlans
(bridge-vids)

● Swp3 is a trunk uplink port inheriting
all vlans from the bridge

/etc/network/interfaces example

auto swp1

iface swp1

 bridge-access 310

auto swp2

iface swp2

 bridge-vids 707 712 850

auto swp3

iface swp3

Bridging: policies

System policy:
● Prohibit addresses on a bridge port

Spanning tree protocol (STP) configuration

Linux kernel bridge driver stp

● Config using brctl, iproute2 or netlink

Stp in user space using mstpd

● Config using mstpctl

/etc/network/interfaces example

auto bridge

iface bridge

bridge-vlan-aware yes

bridge-ports swp1 swp2 swp3

bridge-stp on

auto swp1

iface swp1

mstpctl-bpduguard on

mstpctl-portbpdufilter on

STP: policies

System policy:
● Default to STP bpdu off on vxlan bridge ports

IGMP snooping

Linux kernel bridge driver snoops igmp and
mld packets

● Config using brctl, iproute2 or netlink

IGMP snooping contd

/etc/network/interfaces example

auto br0

iface br0 inet static

bridge-ports swp1 swp2 swp3

bridge-mcrouter 1

bridge-mcsnoop 1

Vxlan Tunnel Endpoints (VTEPS)

eth1

br

swp1

br.100

vxlan100

eth1

br

vxlan100

br.100

swp1

H1
(ip1, m1)

br.100 br.100

H2
(ip2, m2)

H3
(ip3, m3)

vtep1 vtep2

vtep1, vtep2 : tors
H1, H2, H3: hosts

Vxlan Tunnel Endpoints (VTEPS) Contd

● Linux bridge to map end-host devices
(vlan) to a vxlan segment (vni)

auto bridge

iface bridge

bridge-vlan-aware yes

bridge-ports swp1 vxlan1000

bridge-vids 1000

/etc/network/interfaces example

auto vxlan1000

iface vxlan1000

vxlan-local-tunnelip 10.0.0.1

vxlan-id 1000

bridge-access 1000

Vxlan Tunnel Endpoints (VTEPS): policies

System Policy:

● The vlan to vxlan mapping must be configured as a PVID on the vxlan bridge
port

Virtual Redundant Router (VRR) ● VRR provides virtualized router
redundancy

● A bridge connects all the local end-point
devices

● A vlan subinterface on the bridge acts as a
switched virtual interface or a layer3
interface for that vlan. This bridge vlan
interface carries the original mac and ip for
that vlan

● A Linux macvlan interface on top of the
bridge vlan interface carries the virtual
mac and ip

● The virtual mac and ip are common on
both routers of a virtual redundant router
pair

Virtual Redundant Router (VRR) Contd

/etc/network/interfaces example

auto bridge.100

iface bridge.100

address 192.168.0.252/24

address-virtual 00:00:5e:00:01:01
192.168.0.254/24

auto bridge

iface bridge

bridge-vlan-aware yes

bridge-ports glob swp1-3

Virtual routing and forwarding (VRF)
● VRF allows for the presence of multiple

independent routing tables working
simultaneously on the same router or
switch.

● This allows multiple network paths
without the need for multiple switches.

● The VRF is represented as a layer3
master network device with its own
associated routing table.

● Configuring a VRF involves creating a
VRF master interface, allocating a
routing table and enslaving interfaces
to the VRF master device

vrf-red

swp1.100 swp2.100 swp3.100

Virtual routing and forwarding (VRF) contd

● vrf-table attribute
● vrf attribute under an interface to

indicate vrf membership
● ifupdown2 maintains a vrf name and

routing table id in
/etc/iproute2/rt_tables.d/ifupdown
2_vrf_map.conf file enabling easier
references to vrf device and routing
table by the vrf name

/etc/network/interfaces example

auto red

iface red

vrf-table auto

auto swp1.100

iface swp1.100

address 10.0.14.2/24

vrf red

Virtual routing and forwarding (VRF): ifupdown2

$cat
/etc/iproute2/rt_tables.d/ifupdown2_vrf_map.conf

This file is autogenerated by ifupdown2.

It contains the vrf name to table mapping.

Reserved table range 1001 1255

1001 red

1002 blue

/etc/network/interfaces example

auto blue

iface blue

vrf-table auto

auto swp2.200

iface swp2.200

address 10.0.15.2/24

vrf blue

Virtual routing and forwarding (VRF): policies

System policies:

● vrf table id reserved range: Reserving table id ranges helps a system
administrator allocate kernel routing tables for various functions in the system.

● vrf max count: maps to hardware vrf limits

● vrf helper hook scripts: user provided scripts run at creation and deletion of a vrf

● vrf close sockets on down: close active sockets bound to the vrf device

Questions

?
cumulusnetworks.com

CUMULUS, the Cumulus Logo, CUMULUS NETWORKS, and the Rocket Turtle Logo (the “Marks”) are trademarks and service marks of Cumulus Networks, Inc. in the U.S. and other
countries. You are not permitted to use the Marks without the prior written consent of Cumulus Networks. The registered trademark Linux® is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis. All other marks are used under fair use or license from their respective owners.

▪Thank You!

cumulusnetworks.com

Bringing the Linux Revolution to Networking

