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Context and Background..

● Building a Linux OS distribution for routers and switches 
just like your server Linux distribution

● Leverage existing Linux ecosystem and tools
● Leverage existing automation tools: Make your network 

OS provisioning similar to your servers
● Goals of a network interface manager ?

○ Make network interface management painless and 
easy

○ Provision your network interfaces in the same way on 
servers and switches



Linux based NOS vs Linux as your NOS

Linux based NOS:
● Base Linux OS with vendor 

modifications
● Mostly closed boxes
● Proprietary API
● You almost never see the 

Linux behind it

Linux as your NOS:
● Linux as you see on 

servers + seamless 
hardware acceleration 
with switch asics

● Open boxes
● Open Linux networking 

API (Netlink)
● Leverage existing Linux 

ecosystem
● Automate like servers!



Characteristics of Linux network interface configuration

● Desktop and mobile operating system distributions:
○ Optimized for dynamic and changing networks

● Hypervisor and Container Operating system distributions:
○ Optimized for dynamic provisioning of networks for containers coming 

and going away
○ Networking parameters and attributes attached to a container or vm by 

orchestration tools
● Network Operating System distributions:

○ Mostly Static
○ Cookie cutter:

■ Eg: configure trunk vlans on all ports, configure all ports to 10G
○ Scale:

■ Large number of ports and large number of networking attributes 
● Eg: addresses, stp, igmp, vlans,



Our Goal for a network interface manager...

● Unify network interface management on servers and switches
○ All linux distributions use the same kernel netlink API or tools

● Keep it extensible with addon plugin modules for network configuration

● Optimize for a user-base using policies:
○ System policies:

■ Eg: Default system supported speed on an interface
○ User defined policies

■ Eg: vrf hooks, mtu



In search of a network interface manager for a Linux NOS...

● Requirements: 
○ leverage existing Linux tools + API, Extensible, templatable
○ Already known to automation tools

● Started with Debian’s ifupdown ….and currently at ifupdown2

● Ifupdown is a network interface manager on Debian 
(/etc/network/interfaces!)
○ https://packages.debian.org/jessie/admin/ifupdown

● Ifupdown2 is ifupdown optimized for a network operating system
○ https://github.com/CumulusNetworks/ifupdown2
○ https://packages.debian.org/sid/ifupdown2



ifupdown2

# ifupdown2 template example

# configure 1000 vlan devices on 
# eth0
%for v in range(1, 1000):
auto eth0.${v}
iface eth0.${v}
%endfor

● Backward compatible with 
ifupdown interfaces format 
and commands 

▪ Continues to use 
/etc/network/interfaces

▪ Understands interface 
dependencies

▪ Pluggable architecture: 
add-on python modules for 
interface configuration

▪ Interface configuration is 
templatable



Next few slides ...

● Network interface configuration examples on a NOS

● ifupdown2 examples

● Default policies for a NOS where applicable



Physical ports and link attributes

cumulusnetworks.com  

Attributes:
● speed, duplex, autoneg setting using 

ethtool
● mtu, protodown  using iproute2

Policies:

● System port manager policy to always 
set ‘autoneg on’ if port is 1G

/etc/network/interfaces example

auto swp1

Iface swp1

link-speed 10000

link-duplex full

link-autoneg off

mtu 9000

hwaddress 00:02:0a:0b:0c:0d



L3 attributes

Attributes:
● address and static route 

configuration using iproute2 or 
direct netlink API to kernel

Policies:
● policy to purge or not purge existing 

addresses (useful when address 
configuration is owned by multiple 
entities in the system)

/etc/network/interfaces example

auto swp1
iface swp1

address 10.99.1.1/30
post-up ip route add 10.1.2.0/24 via 

10.99.1.2



Bonding or Link aggregation

/etc/network/interfaces example

auto bond0

iface bond0

bond-slaves glob swp1-3

bond-mode 802.3ad

auto bridge

iface bridge

bridge-ports swp1 bond0

● Bond creation and configuration 
using iproute2, sysfs and direct 
netlink API to kernel



Bonding or Link aggregation: policy

 System policy:

● restrict bond modes to network switch hardware link aggregation modes



Bridging

● Bridge attributes to indicate vlan 
filtering (vlan aware) bridge

● Easier ways to indicate range of ports

/etc/network/interfaces example

auto bridge

iface bridge

      bridge-vlan-aware yes

      bridge-ports glob swp1-3

      bridge-stp on

      bridge-vids 310 700 707 712 850 910



Bridging Contd

● Access port: sends and receives 
untagged ports (bridge-access)

● Trunk port: sends and receives tagged 
ports and able to switch multiple vlans 
(bridge-vids)

● Swp3 is a trunk uplink port inheriting 
all vlans from the bridge

/etc/network/interfaces example

auto swp1

iface swp1

      bridge-access 310

auto swp2

iface swp2

      bridge-vids 707 712 850

auto swp3

iface swp3



Bridging: policies

System policy:
● Prohibit addresses on a bridge port



Spanning tree protocol (STP) configuration

Linux kernel bridge driver stp

● Config using brctl, iproute2 or netlink

Stp in user space using mstpd

● Config using mstpctl

/etc/network/interfaces example

auto bridge

iface bridge

bridge-vlan-aware yes

bridge-ports swp1 swp2 swp3

bridge-stp on

auto swp1

iface swp1

mstpctl-bpduguard on

mstpctl-portbpdufilter on



STP: policies

System policy:
● Default to STP bpdu off on vxlan bridge ports



IGMP snooping

Linux kernel bridge driver snoops igmp and 
mld packets

● Config using brctl, iproute2 or netlink



IGMP snooping contd

/etc/network/interfaces example   

auto br0

iface br0 inet static

bridge-ports swp1 swp2 swp3

bridge-mcrouter 1

bridge-mcsnoop 1



Vxlan Tunnel Endpoints (VTEPS)
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Vxlan Tunnel Endpoints (VTEPS) Contd

● Linux bridge to map end-host devices 
(vlan) to a vxlan segment (vni)

 

auto bridge

iface bridge

bridge-vlan-aware yes

bridge-ports swp1 vxlan1000

bridge-vids 1000

/etc/network/interfaces example  

auto vxlan1000

iface vxlan1000

vxlan-local-tunnelip 10.0.0.1

vxlan-id 1000

bridge-access 1000



Vxlan Tunnel Endpoints (VTEPS): policies

System Policy:

● The vlan to vxlan mapping must be configured as a PVID on the vxlan bridge 
port



Virtual Redundant Router (VRR) ● VRR provides virtualized router 
redundancy

● A bridge connects all the local end-point 
devices

● A vlan subinterface on the bridge acts as a 
switched virtual interface or a layer3 
interface for that vlan. This bridge vlan 
interface carries the original mac and ip for 
that vlan

●  A Linux macvlan interface on top of the 
bridge vlan interface carries the virtual 
mac and ip 

● The virtual mac and ip are common on 
both routers of a virtual redundant router 
pair



Virtual Redundant Router (VRR) Contd

/etc/network/interfaces example  

auto bridge.100

iface bridge.100

address 192.168.0.252/24

address-virtual 00:00:5e:00:01:01 
192.168.0.254/24

 

auto bridge

iface bridge

bridge-vlan-aware yes

bridge-ports glob swp1-3



Virtual routing and forwarding (VRF)
● VRF allows for the presence of multiple 

independent routing tables working 
simultaneously on the same router or 
switch. 

● This allows multiple network paths 
without the need for multiple switches.

● The VRF is represented as a layer3 
master network device with its own 
associated routing table.

●  Configuring a VRF involves creating a 
VRF master interface, allocating a 
routing table and enslaving interfaces 
to the VRF master device 

vrf-red

swp1.100 swp2.100 swp3.100



Virtual routing and forwarding (VRF) contd

● vrf-table attribute
● vrf attribute under an interface to 

indicate vrf membership
● ifupdown2 maintains a vrf name and 

routing table id in 
/etc/iproute2/rt_tables.d/ifupdown
2_vrf_map.conf file enabling easier 
references to vrf device and routing 
table by the vrf name

/etc/network/interfaces example

auto red

iface red

vrf-table auto

auto swp1.100

iface swp1.100

address 10.0.14.2/24

vrf red



Virtual routing and forwarding (VRF): ifupdown2

$cat 
/etc/iproute2/rt_tables.d/ifupdown2_vrf_map.conf

# This file is autogenerated by ifupdown2.

# It contains the vrf name to table mapping.

# Reserved table range 1001 1255

1001 red

1002 blue

/etc/network/interfaces example

auto blue

iface blue

vrf-table auto

auto swp2.200

iface swp2.200

address 10.0.15.2/24

vrf blue



Virtual routing and forwarding (VRF): policies

System policies:   

● vrf  table id reserved range: Reserving table id ranges helps a system 
administrator allocate kernel routing tables for various functions in the system. 

● vrf  max count: maps to hardware vrf limits

● vrf helper hook scripts: user provided scripts run at creation and deletion of a vrf

● vrf  close sockets on down: close active sockets bound to the vrf device



Questions

?
cumulusnetworks.com  
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