
1

Making Linux TCP Fast

Yuchung Cheng
Neal Cardwell

netdev 1.2 Tokyo, October, 2016

Once upon a time, there was a TCP ACK...

Here is the a story of what happened next...

2

RACK: detect losses by packets’ send time

Monitors the delivery process of every (re)transmission. E.x.

Sent packets P1 and P2

Receives a SACK of P2

=> P1 is lost if sent more than $RTT + $reo_wnd ago1

Reduce timeouts in Disorder state by 80% on Google.com

3

1 RACK draft-ietf-tcpm-rack-00 since Linux 4.4

https://tools.ietf.org/html/draft-ietf-tcpm-rack-00

congestion control:
how fast to send?

4

5

Congestion and bottlenecks

6

De
liv

er
y

ra
te

BDP BDP + BufSize

Congestion and bottlenecks

amount in flight

7

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

amount in flight

8

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

CUBIC / Reno

amount in flight

9

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

Optimalǿ max BW and min RTT (Gail & Kleinrock. 1981)

amount in flight

BDP = (max BW) * (min RTT)

10

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

Estimating optimal point (max BW, min RTT)

amount in flight

Est min RTT = windowed min of RTT samples

Est max BW = windowed max of BW samples

11

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

amount in flight

Only
min RTT is
visible

Only
max BW
is visible

But to see both max BW and min RTT,
must probe on both sides of BDP...

One way to stay near (max BW, min RTT) point:

12

Model network, update max BW and min RTT estimates on each ACK

Control sending based on the model, to...

Probe both max BW and min RTT, to feed the model samples

Pace near estimated BW, to reduce queues and loss

Vary pacing rate to keep inflight near BDP (for full pipe but small queue)

That's BBR congestion control (code in Linux v4.9Ȁ paperǿ ACM Queue, Oct 2016)

BBR = Bottleneck Bandwidth and Round-trip propagation time

BBR seeks high tput with small queue by probing BW and RTT sequentially

http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
http://queue.acm.org/

Confidential + Proprietary

BBR: model-based walk toward max BW, min RTT

optimal operating point

13

Confidential + Proprietary

STARTUP: exponential BW search

14

Confidential + Proprietary

DRAIN: drain the queue created during startup

15

Confidential + Proprietary

PROBE_BW: explore max BW, drain queue, cruise

16

Confidential + Proprietary

PROBE_RTT briefly if min RTT filter expires (=10s)*

[*] if continuously sending

minimal packets in flight for max(0.2s, 1 round trip)

17

Packet scheduling: when to send?

18

NIC

TCP

Pacing

Fair queuing

TCP Small Queues (TSQ)
TSO autosizing

link
19

?

fq

Performance results...

20

BBR vs CUBICǿ synthetic bulk TCP test with 1 flow, bottleneck_bw 100Mbps, RTT 100ms

Fully use bandwidth, despite high loss

21

Low queue delay, despite bloated buffers

22BBR vs CUBICǿ synthetic bulk TCP test with 8 flows, bottleneck_bw=128kbps, RTT=40ms

BBR is 2-20x faster on Google WAN

● BBR used for all TCP on Google B4
● Most BBR flows so far rwin-limited

○ max RWIN here was 8MB
(tcp_rmem[2])

○ 10 Gbps x 100ms = 125MB BDP

● after lifting rwin limitǿ

○ BBR 133x faster than CUBIC

23

Conclusion

Algorithms and architecture in Linux TCP have evolved

● Maximizing BW, minimizing queue, and one-RTT recovery (BBR, RACK)
● Based on groundwork of a high-performance packet scheduler

(fq/pacing/tsq/tso-autosizing)
● Orders of magnitude higher bandwidth and lower latency

Nextǿ Google, YouTube, and... the Internet?

● Help us make them better! https://groups.google.com/forum/#!forum/bbr-dev

24

https://groups.google.com/forum/#!forum/bbr-dev

Backup slides...

26

Confidential + Proprietary

BBR convergence dynamics

Converge by sync'd PROBE_RTT + randomized cycling phases in PROBE_BW

● Queue (RTT) reduction is observed by every (active) flow
● Elephants yield more (multiplicative decrease) to let mice grow

bw = 100 Mbit/sec
path rtt = 10ms

