
KTLS: Linux Kernel Transport Layer Security

1st Dave Watson
Facebook

San Francisco, USA
davejwatson@fb.com

Abstract

Transport Layer Security (TLS) is a widely-deployed proto-
col used for securing TCP connections on the Internet. TLS
is also a required feature for HTTP/2, the latest web standard.
In kernel implementations provide new opportunities for op-
timization of TLS. This paper explores a possible kernel TLS
implementation, as well as the kernel features it enables, such
as sendfile(), BPF programs, and hardware TLS offload. Our
implementation saves up to 7% CPU copy overhead and up
to 10% latency improvements when combined with the Kernel
Connection Multiplexor (KCM).

Keywords
TLS, DTLS, Linux, security, performance, sockets,
OpenSSL, offload

Introduction
Transport Layer Security [2] (TLS) and Datagram Transport
Layer Security (DTLS) are building blocks for transport se-
curity on the modern internet. The latest version of the Hy-
pertext Transfer Protocol [1] (HTTP/2) specifies the use of
TLS. It provides both encryption and authentication of TCP
connections, but comes with a CPU cost. TLS and DTLS
consists of two primary operations: first a TLS handshake is
performed to negotiate a secure symmetric encryption algo-
rithm and keys, and then TLS symmetric encryption is per-
formed on TLS records. TLS has several types of records,
including data records and control records.

DTLS is a UDP based encryption protocol. Most elements
of TLS are reused, with minor changes to support the stateless
datagram messages. KTLS supports DTLS messages, and
implements a sliding window for replay protection.

Facebook encrypts the majority of its external traffic over
HTTPS. Internal traffic is also encrypted if there is enough
available CPU. Internal traffic is served over Apache Thrift
[6], Facebook’s RPC framework, and is also encrypted with
TLS.

Facebook’s HTTP/2 web servers and RPC servers both
function similarly. One thread per core is dedicated to an
epoll() event loop. When epoll wait() returns a list of active
connections, read() and write() are used to read in the request
and then send the static or dynamic response. In a TLS en-
abled service, OpenSSL’s SSL read and SSL write primitives

Figure 1: Standard web server with OpenSSL

are used instead. Since OpenSSL is a user space library, all
data must be in user space to be encrypted. Facebook’s cur-
rent SSL overheads result in approximately 2% of total CPU
spent on copy from/copy to user space due to encryption, and
approximately 10% of total CPU is spent on encryption and
decryption routines on machines that make heavy use of TLS.

To eliminate the overhead due to copies, Facebook has in-
vestigated using the sendfile() or splice() system calls to send
static content directly from disk to the network, without any
copies through user space. Unfortunately, do to our wide de-
ployment of TLS, this hasn’t been possible, due to the need
to encrypt data in user space. Facebook has also experi-
mented with the Kernel Connection Multiplexor [3] (KCM),
and found reductions in tail latencies. Unfortunately it would
require access to the unencrypted bytes in the kernel.

Encrypting the data in the kernel results in ideally zero
copies, with only the encryption taking the bulk of the CPU
usage. User space only needs to inform the kernel of which
data needs to be encrypted. The Linux kernel has an existing
crypto interface, af alg, that can be used to do bulk encryp-
tion, but additional overhead is required to add the framing
from user space. It also lacks an efficient interface to NIC
hardware encryption offloads.

Figure 2: Server using KTLS and sendfile

Approach
Facebook, in collaboration with RedHat, have implemented
a Linux kernel TLS socket. To avoid putting unnecessary
complexity in the kernel, the TLS handshake is kept in user
space. A full TLS connection using the socket is done using
the following scheme:

• Call connect() or accept() on a standard TCP file descriptor.
• A user space TLS library is used to complete a handshake.

We have tested with both GnuTLS and OpenSSL.
• Create a new KTLS socket file descriptor.
• Extract the TLS Initialization Vectors (IVs), session keys,

and sequence IDs from the TLS library. Use setsockopt on
the KTLS fd to pass them to the kernel.

• Use standard read(), write(), sendfile() and splice() system
calls on the KTLS fd.

Upon receipt of a non-data TLS message (a control mes-
sage), the KTLS socket returns an error, and the message is
instead left on the original TCP socket. The KTLS socket
is automatically unattached. Transfer of control back to the
original encrypted FD is done by calling getsockopt to re-
ceive the current sequence numbers, and inserting them in to
the TLS library. Example:

i f (r e a d (. . .) < 0) {
g e t s o c k o p t (t l s f d ,

AF KTLS ,
KTLS GET IV RECV ,
s s l −>s3−>r e a d s e q u e n c e ,

&o p t l e n) ;
/∗ S i m i l a r f o r IV SEND ∗ /
SSL read (t c p f d , . . .) ;

}

In this scheme, the TLS library is used to handle the con-
trol messages and do the handshake, and does not need to
be modified. It can maintain control of the original TCP fd,
while unencrypted data flows through the KTLS socket. The
user space application only needs to handle application data,
and use standard socket system calls.

Most of the complexity in this scheme is the buffer man-
agement between the two FDs, and handing off control when
control messages are received. While it is reasonable to not
handle most control messages – Facebook’s servers shutdown
the connection on receipt of a control message – the client
sending the control message is still expecting a response, so
to enable a clean shutdown, control must still be passed back
to the original TLS handshake library to send the appropri-
ate response. To help manage this complexity, the strparser
[9] library was developed to manage parsing TCP buffers as
datagram messages.

Crypto Framework Changes
The Linux crypto framework already contains the two sym-
metric ciphers included in the TLS 1.3 draft, GCM-AES and
ChaCha/Poly. Current Intel chipsets support AESNI instruc-
tion set, which allows fast encryption and decryption routines
using GCM-AES. These routines were already implemented
in assembly for IPSEC, however, they required minor modifi-
cations to work with TLS. TLS’s AAD data is 13 bytes, while
IPSEC uses 16 bytes. An additional template was added to
support the correct AAD size. The asm routines still require
a full 16 bytes for padding.

The current AESNI crypto interface requires all parts of
the message to be contiguous - including the AAD and tag
data. This presents a slight performance hit on both send and
receive – for send, we can reuse almost the same AAD every
time, and don’t need to reallocate space for it on encrypt. On
receive, we want to strip both the AAD and tag data before
passing it to user space. Minor changes to the interface can
be made to support separate locations for the AAD, user data,
and tag.

Kernel Connection Multiplexor
Facebook’s primary motivation was to gain access to the un-
encrypted bytes in kernel space. KCM is used to decode
the framing, and make intelligent scheduling choices, before
sending the frames to user space. KTLS sockets are mapped
1:N to user space sockets, where N is the number of user
space threads, which are usually mapped to cores. Using this
scheme, KTLS + KCM is able to reduce the total number of
thread migrations of an individual request.

Results
We have implemented the KTLS Linux kernel module, and
run it in production. KTLS encryption speed is on par with
user space encryption speed. The number of active file de-
scriptors increased, due to using an FD for both the TCP
socket and the KTLS socket. The services ran without any
change in functionality, and only minor service code changes,
for the duration of the test. A KCM socket scheme, as de-
scribed above, was run on top of the KTLS socket for the
service – KCM was updated to be able to directly attach to a
KTLS socket. KCM results in a 10%-20% drop in the 99th

percentile latency for the service. See figure 3.
We also tested the performance of using sendfile(). The

base scheme of read() followed by write() of static data from
a file to a socket was benchmarked, followed by several other
schemes.

Figure 3: KTLS + KCM 99th percentile latency (green) vs. OpenSSL (blue) in ms

SSL mmap sendfile mmap+vmsplice

90

100

110

100
97

93

97

Pe
rc

en
tn

or
m

al
iz

ed
C

PU
tim

e

Figure 4: Various schemes to send files form disk, normalized
to read(file) SSL write(tcp fd)

SSL Use OpenSSL to read() a file to a user space buffer and
SSL write() it to a tcp fd.

mmap Mmaping a file, then calling SSL write

sendfile Calling sendfile on a KTLS fd

mmap+vmsplice mmaping file data, using OpenSSL to
frame and encrypt it, then calling vmsplice() to send the
data to a tcp fd.

Multiple splice() calls can be used in place of sendfile().
Testing configuration was Intel R©Xeon R©CPU E5-2660 @
2.20GHz. Test was a send of a 2GB data file from disk, nor-
malized CPU usage for ten runs. Sender used above schemes,
receiver used SSL read.

A rough breakdown of top CPU usage for the kernel send-
file scheme:

72.38% e n c r y p t b y 8 n e w 8
2.49% e n c r y p t b y 8 8
1.45% get AAD loop2 done1962
0.71% t l s s e n d p a g e

and for a mmap + SSL write scheme:

46.60% gcm ghash c lmul
25.82% a e s n i c t r 3 2 e n c r y p t b l o c k s
5.44% c o p y u s e r e n h a n c e d f a s t s t r i n g
0.94% t c p s e n d m s g
0.76% f i l e m a p m a p p a g e s

Utilizing vmsplice we were able to remove the copy from
user space to the kernel’s tcp buffers, but it was replaced by
VM page management overhead.

Discussion
KTLS enables access to the unencrypted bytes in the kernel.
The majority of the code is related to buffer management
and translation from the message-oriented TLS protocol to
the stream-oriented BSD socket interface. This message-to-
stream interface could be generalized to other use cases using
strparser.

Enabling sendfile() for Linux results in a 7% performance
win vs. a naive read/write strategy. Crypto af alg sockets can
do encryption in kernel space, but current implementations
still add copy overhead in the crypto library. Strategies in-
volving mmap or splice can improve on a naive read/write
strategy, but introduce complexity and still add user space
VM management overhead, such that a kernel TLS imple-
mentation still seems to have a slight advantage.

Future Directions
The feasibility of a TLS hardware offload is being investi-
gated. A hardware offload would require a kernel interface
to access it. Hardware offload would be able to instrument
the ktls socket as well as the driver, to set the correct encryp-
tion keys. While a PCI or on-board offload could utilize a
generic offload like the af alg sockets with some work to re-
move some overhead, a NIC offload would require a socket
type that ties together the sending socket and the crypto, as in
ktls, to avoid additional round trip latency.

Related Work
Netflix has implemented a similar sendfile() scheme for the
BSD operating system [8]. Unlike Linux, BSD does not sup-
port the asynchronous splice() primitives, so sendfile() must
be used. They also needed changes to BSD’s Open Crypto
Framework to get the expected performance improvements,
and eventually abandoned the interface altogether. [7].

Solaris supported a similar kernel ssl feature, kssl [4]. Its
intended use was “to provide SSL protection even for appli-
cations which are only able to communicate in clear text over
TCP”, and not strictly function as a performance improve-
ment. Unlike the proposed Linux and BSD solutions, kssl

managed the handshake and certificates. Server-side appli-
cations did not need any changes, and clear text TCP was
transparently proxied.

Fridolı́n Pokorný and RedHat have explored the possibil-
ity of using the KTLS kernel module to optimize the perfor-
mance of VPN software [5]. They include extensive perfor-
mance numbers and comparisons.

Code
Code can be found at https://github.com/ktls/
af_ktls.

References
[1] Belshe, M.; Peon, R.; and M. Thomson, E. 2015. Hy-

pertext transfer protocol version 2 (HTTP/2). RFC 7540,
BitGo and Google, Inc and Mozilla.

[2] Dierks, T., and Rescorla, E. 2008. The transport layer se-
curity (TLS) protocol version 1.2. RFC 5246, Independent
and RTFM, Inc.

[3] Kernel connection multiplexor (kcm). https://lwn.
net/Articles/657999/. Accessed: 2016-8-11.

[4] Kssl. https://docs.oracle.com/cd/E23823_
01/html/816-5175/kssl-5.html. Accessed:
2016-8-11.

[5] Pokorný, F. 2015. Linux vpn performance and optimiza-
tion. Master’s thesis, Brno University of Technology, Fac-
ulty of Information Technology.

[6] Slee, M.; Agarwal, A.; and Kwiatkowski, M. 2007.
Thrift: Scalable cross-language services implementation.
paper, Facebook.

[7] Stewart, R., and Long, S. 2016. Improving highband-
width tls in the FreeBSD kernel. paper, Netflix Inc.

[8] Stewart, R.; Gurney, J.-M.; and Long, S. 2015. Opti-
mizing TLS for high-bandwidth applications in FreeBSD.
paper, Netflix Inc.

[9] Strparser. https://lwn.net/Articles/
695982/. Accessed: 2016-9-13.

https://github.com/ktls/af_ktls
https://github.com/ktls/af_ktls
https://lwn.net/Articles/657999/
https://lwn.net/Articles/657999/
https://docs.oracle.com/cd/E23823_01/html/816-5175/kssl-5.html
https://docs.oracle.com/cd/E23823_01/html/816-5175/kssl-5.html
https://lwn.net/Articles/695982/
https://lwn.net/Articles/695982/

	Keywords
	Introduction
	Approach
	Crypto Framework Changes
	Kernel Connection Multiplexor

	Results
	Discussion
	Future Directions
	Related Work
	Code

