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Abstract
UDP encapsulation encompasses the techniques and protocols to 
encapsulate  and  decapsulate  networking  packets  of  various 
protocols inside UDP. UDP encapsulation has become prevalent 
in data centers, and in fact nearly all the solutions for network 
virtualization currently being proposed in IETF are based on UDP 
encapsulation.

In this paper we present much of the recent work done by the 
Linux networking community to make UDP encapsulation a first 
class  citizen.  This  cumulative  work  has  resulted  in  greatly 
improved performance, robustness, and scalability. We begin by 
describing the basic support and model for UDP encapsulation. 
Next, we look at performance enhancements in the areas of load 
balancing, checksum offload, and segmentation offload. Finally, 
we  examine  two generic  methods  of  UDP encapsulation:  Foo-
over-UDP and Generic UDP Encapsulation. 
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Introduction
UDP encapsulation is becoming ubiquitous in data centers, 
not  just  for  virtualization  use  cases, but  also  for
non-virtualization. The reason for this is simple: it is a low 
overhead  protocol  that allows  several  UDP  specific 
optimizations  commonly  supported  by  networking 
hardware  to  be  leveraged.  UDP  is  a  very  simple  and 
flexible  transport  protocol  that  offers  a  great  deal  of 
interoperability and compatibility with legacy hardware.

In this paper we  focus on the recent work done in the 
Linux  networking stack  to  support  UDP  encapsulation. 
First, we describe the basics of UDP encapsulation and its 
support  in  Linux.  Secondly,  we discuss  use of  common 
networking optimizations with UDP encapsulation for load 
balancing,  checksum  offload,  and  segmentation  offload. 
We  present  novel techniques  of  source  port  flow 
identifiers,  checksum-unnecessary conversion, and remote 
checksum offload.  Finally, we examine support for some 
specific UDP encapsulation methods; in particular we look 
at Foo-over-UDP (FOU) and Generic UDP Encapsulation 
(GUE).  FOU provides the simplest no frills model of UDP 
encapsulation,  it  simply  encapsulates  packets directly  in 
the  UDP  payload.  GUE  is  a  generic  and  extensible 
encapsulation, it allows encapsulation of packets for any IP 
protocol and optional data as part of the encapsulation.

Basics of UDP encapsulation
Encapsulation is the technique of adding network headers 
to a fully formed packet for the purposes of transit across a 
network.  UDP encapsulation includes the techniques and 
protocols to  encapsulate  networking packets  within User 
Datagram Protocol [1]. Packets are contained in the UDP 
payload, and are said to be encapsulated in UDP packets.

Tunneling, overlay networks, and network virtualization, 
are terms often associated with encapsulation.  Tunneling 
refers to the use of a high level transport service to carry 
packets or messages from another service. Encapsulation is 
often the lower level mechanism that implements a tunnel. 
An overlay network is a computer network which is built 
on the top of another network. An overlay network may 
be  composed  of  links  which  are  implemented  by 
tunneling.  Network virtualization  creates  logical,  virtual 
networks that are decoupled from the underlying network 
hardware.  A virtual  network is  often implemented as  an 
overlay  network  which  provides  the  illusion  of  being  a 
physical network to the user.

Encapsulation does  not  require  UDP, in  fact  there  are 
several methods for encapsulation of packets within IP not 
using UDP; these include IPIP (IP over IP), SIT (IPv6 over 
IPv4),  GRE  (Generic  Routing  Encapsulation),  L2TP 
(Layer  Two  Tunneling  Protocol)  and  EtherIP  (Ethernet 
over  IP) [2,3,4,5,6]. However,  encapsulating  using  UDP 
provides some distinct advantages:

• Hardware optimizations for scaling, such as  RSS 
(Receive  Side  Scaling)  and  ECMP (Equal  Cost 
Multipath) routing,  can be leveraged.  These can 
provide significant performance benefits.

• The UDP checksum provides  protection  against 
packet mis-delivery. This especially relevant if a 
packet is being encapsulated in IPv6 which does 
not include a header checksum.

• Hardware  support  for  UDP  checksum  can  be 
leveraged.  NIC  support  for  UDP  checksum 
offload is ubiquitous and can be used to offload 
inner checksum calculation.

• The destination UDP port provides a demux for 
different encapsulation methods or encapsulation 
protocols.

• UDP  allows  extensible  encapsulation  protocols. 
For  instance,  some  proposed  protocols  include 
sending optional data with encapsulated packets.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



Model of UDP Encapsulation
Conceptually, UDP encapsulation is simple. Encapsulation 
is  performed  by an  encapsulator.  An encapsulator  starts 
with a packet which could be for layer 2, layer 3, or layer 
4. IP and UDP headers are prepended to the packet. The IP 
header  addresses  the  endpoints  of  the  encapsulation,  the 
destination being the node that will perform decapsulation. 
The destination port of the UDP header is set to a specific 
port  number  for  the encapsulation method. An additional 
encapsulation header may be inserted after the UDP header 
which can indicate the protocol of the encapsulated packet 
or  other  data  related  to  the  encapsulation.  Once  the 
encapsulated  packet  is  created  it  is  transmitted  to  the 
destination IP address.

At  the  destination  of  the  encapsulated  packet  a 
decapsulator performs  decapsulation.  This  involves 
verifying and removing the IP and UDP headers as well as 
any additional encapsulation headers. After removing these 
headers, the resultant packet is now the same one that was 
originally encapsulated. This packet is  then  processed by 
the networking stack based on its protocol.

In an encapsulated packet, the encapsulating headers are 
known as  outer headers. The headers of the encapsulated 
packet are known as inner headers.

Figure  1  illustrates  UDP  encapsulation  being  used  to 
create tunnels for network virtualization.

Figure 1. UDP and GUE encapsulation for network virtualization. 
The diagram at the top illustrates the flow of a packet from an 
application in one Virtual Machine (VM) to a peer application in 
another  VM  on  another  host.  The  bottom  portion  shows  the 
packet  encapsulations  and  protocol  headers  for the  various 
protocol layers. 

UDP Encapsulation Support in Linux
The Linux stack includes various facilities for supporting 
UDP encapsulation.  An encapsulation  method is  usually 
implemented  as  part  of  a  specialized  kernel  module. 

Method specific configuration specifies use and parameters 
of encapsulation  for transmit  as well as receive including 
the UDP port number for the encapsulation. In the case that 
UDP  encapsulation  is  being  used  for  implementing 
network tunnels (i.e. encapsulation of Layer 2 or Layer 3 
packets) configuration includes the source and destination 
addresses of the tunnel endpoints which are set in the outer 
IP header.

The facilities and APIs described in this paper are based 
on the 3.18 version of Linux unless otherwise noted [7].
Encapsulated packet representation. In the Linux kernel, 
control  information  and  data  pointers  for  a  packet  are 
contained in the sk_buff data structure [8]. Components 
of an encapsulated packet are represented by fields in the 
sk_buff structure. The sk_buff has references to both 
the outer headers and inner headers of encapsulation.

The fields for the outer headers are also just references to 
the headers of a packet without encapsulation. These are:

transport_header
     Transport layer header    
network_header
     Network layer header
mac_header
     Link layer header

The  fields  referring  to  the  inner  headers  of  an 
encapsulated packet are:

inner_protocol
     Protocol of encapsulated packet
inner_transport_header
     Inner transport layer header    
inner_network_header
     Inner network layer header
inner_mac_header
     Inner link layer header

The  inner  header  fields  are  only  valid  if  the 
encapsulation bit is set in an sk_buff, and they are 
only relevant in the transmit path. In the case of multiple 
nested encapsulations, the outer header fields always refer 
to the outermost headers, and the inner header fields refer 
to the innermost headers.  Note that the number of nested 
encapsulations in a packet is  only bounded by the MTU 
(maximum  size  of  a  packet),  however  some  kernel 
mechanisms  are  optimized  to handle  up  to  three  nested 
encapsulations. 
Receive  path.  To  implement  the  receive  path,  an 
implementation creates an in-kernel UDP socket and binds 
the  local  port  to  the  port  number  specified  for 
encapsulation.  The  Linux  stack  defines  an  encap_rcv 
function  for  sockets  which  is  set  by  an  encapsulation 
method to receive packets. When encap_rcv is set, the 
UDP layer  calls  this  function  in  lieu  of  normal  receive 
processing  for  a  socket.  Up  to  the  point  that  the 
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encap_rcv function is called, the UDP stack processes 
packets with encapsulation no differently than other UDP 
packets;  this  includes  validating  the  UDP  headers  and 
verifying the UDP checksum. 
Transmit  path.  On  the  transmit  side,  an  encapsulation 
method builds encapsulated packets. This typically entails 
prepending  a  UDP  header  and  encapsulation  header  if 
needed to the packet being encapsulated.  Helper functions 
are  called  to  set  the  UDP source  port  and  initialize  the 
UDP checksum field.  The assembled packet is then sent 
using  the  IP  packet  transmit  functions.  Note  that  the 
transmit path does not require a socket as the receive side 
does,  and  there  is  no  required  relationship  between  the 
send and receive paths.

 Offload mechanisms
Much of the work in enhancing the Linux stack to support 
UDP encapsulation is focused on making existing offload 
mechanisms “encapsulation aware”.  Offload  mechanisms 
are  techniques that  are  implemented separately  from the 
normal  protocol  implementation  of  the  stack  and  are 
intended  to  optimize  or  speed  up  protocol  processing. 
Hardware  offload  is  performed  within  a  NIC device  on 
behalf  of  a  host.  Software  offload  mechanisms  are 
implemented  in  a  lower  layer  than  protocol  processing, 
typically near or in NIC drivers.

There are thee basic offload techniques of interest:
• Load balancing
• Checksum offload
• Segmentation offload

Load Balancing
Both networking hardware and software stacks implement 
a  variety  of  mechanisms  to  perform  load  balancing 
(statistical  multiplexing)  of  packets  across  a  set  of 
networking  resources.  Switches  often  implement  Equal 
Cost Multipath routing (ECMP) which distributes packets 
over  multiple  network  paths  to  improve  utilization  [9]. 
Most Network Interface Cards (NICs) implement Receive 
Side  Scaling  (RSS)  which  is  a  technique  to  distribute 
packets  over  a  number  of  receive  queues  to  promote 
parallelism  and  reduce  latency  in  host  processing  [10]. 
The  Linux stack  implements  Receive  Packet  Steering 
(RPS) which is a software analogue for RSS, and Receive 
Flow  Steering  (RFS)  which  steers packets  to  the  CPU 
where  they are being  received  by an application  [11].  In 
most  cases,  load  balancing is  done at  the  granularity  of 
packet flows. A flow is a sequence of packets that belong 
to the same the logical communication happening between 
a pair of hosts (packets for a TCP connection for instance). 
Usually, the packets for a flow should follow the same path 
through  load  balancing  mechanisms  so  that  they  are 
delivered in order.

Hardware devices commonly perform hash computations 
on packet headers to classify packets into flows or flow 
buckets.  Packets are classified into flows by computing a 

flow hash. Flow hashes are usually either a three-tuple hash 
over the source address, destination address, and protocol 
number;  or  a  five-tuple  hash  over  the  source  address, 
destination  address,  source  port,  destination  port,  and 
protocol number. Some devices and the Linux stack in its 
flow hash calculation (skb_get_hash) omit the protocol 
number to produce a two-tuple or four-tuple hash which 
doesn't  appreciably  reduce  the  quality  of  the  flow  hash 
value. Typically, networking hardware will compute five-
tuple hashes for TCP and UDP, but only three-tuple hashes 
for  other  protocols.  Since  the  five-tuple  hash  provides 
more granularity, load balancing can be finer grained with 
better distribution.

In  the case  of  UDP encapsulation,  the computed flow 
hash of a packet should be representative of the flow for 
the encapsulated  packet.  To  provide  for  this,  the  source 
port of the outer UDP header can be set to a value that 
maps to the inner flow. This is referred to as the inner flow 
identifier.  The  inner  flow  identifier  is  set  by  the 
encapsulator;  it  can  be  computed  on  the  fly  based  on 
packet contents or retrieved from state maintained for the 
inner flow. A device that computes the flow hash of a UDP 
packet will include the source port in its calculation, so in 
turn the flow hash will correspond to the inner flow.

Examples of deriving an inner flow identifier are:
• If  the  encapsulated  packet  is  a  layer  4  packet, 

TCP/IPv4 for instance, the inner flow identifier 
could be based on the canonical five-tuple hash 
of the inner packet.

• If  the  encapsulated  packet  is  an  AH  (IPsec 
Authentication  Header)  transport  mode  packet 
with TCP as next header, the inner flow identifier 
could  be  based  on  the  two-tuple  hash  of  the 
source and destination TCP ports.

• If a node is encrypting a packet using ESP (IPsec 
Encapsulating  Security  Payload)  tunnel  mode, 
the  inner flow identifier  could be based on the 
contents  of  clear-text  packet.  For  instance,  a 
canonical  five-tuple  hash  for  a  TCP/IP  packet 
could be used.

The five-tuple hash commonly used to identify a flow in 
UDP  will  cover  the  outer  source  address,  destination 
address, source port (inner flow identifier), and destination 
port. These values are expected to be mostly persistent for 
the  lifetime  of  an  encapsulated  flow,  only  changing 
infrequently (at most once every thirty seconds).
NIC support for UDP hash. Most NICs that support UDP 
flow hash calculation (for UDP RSS) disable it by default. 
This was done to ensure that fragments of a UDP packet 
are received in order when using RSS. If a UDP packet is 
fragmented, a five-tuple hash can only be calculated for the 
first fragment which contains the UDP headers. For the rest 
of the fragments, only a three-tuple hash can be procured. 
In  UDP encapsulation,  fragmentation  of  the  outer  UDP 
packet is  avoided so a five-tuple hash should always be 
calculable. 
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The UDP flow hash in  the  NIC should be enabled to 
optimize  for  UDP  encapsulation.  This  can  be  done  per 
device using the ethtool command [12]. For example:
 
ethtool -N eth0 rx-flow-hash udp4 sdfn

This command configures the NIC device for  eth0 to 
include the UDP ports and IP addresses when computing 
the flow hash for UDP over IPv4 packets.
Function to set UDP source  port  for encapsulation.  In 
the Linux stack a common function is called to create a 
source  port  value  for  UDP  encapsulation  [13].  This 
function is:

be16 udp_flow_src_port(struct net *net, 
      struct sk_buff *skb,
      in mint, int max, bool use_eth)

This function returns a hash value for the packet passed 
in  the  sk_buff (before  encapsulation).  The  value  is 
limited  to  the  range  provided  by  the  min and  max 
arguments.  By default (when  min and  max are zero) the 
range  for  the  return  value is  the local  port  range  in  the 
system  which  defaults to the ephemeral port range 32768 
to 65535. skb_get_hash is called to determine the flow 
hash for the packet. If a flow hash has already been set in 
the sk_buff (hash field  is nonzero) that value is used, 
else the packet will be parsed to determine the flow hash 
(skb_flow_dissect function is called).
Flow  label  in  IPv6.  An  alternative  to  setting  the  UDP 
source port with a flow identifier is to set the IPv6 flow 
label to correspond to the inner flow [14]. Some devices 
may  be  configured  to  use  the  flow  label  in  hash 
computation, and the Linux stack will compute a flow hash 
using flow label and the IP addresses of a received packet 
if the flow label is non-zero.

A  common  function  exists  to  create  a  flow  label  for 
transmit based on a packet's flow hash [15]:

be32 ip6_make_flowlabel(
   struct net *net, struct sk_buff *skb
   be32 flowlabel,bool autolabel)       

If  autolabel is true,  flowlabel is zero,  and  the 
auto_flowlabels IPv6 networking  sysctl  is set then 
skb_get_hash is  called to determine the hash for the 
flow and it is returned. The caller will mask the value to 
twenty bits for setting the IPv6 flow label in a packet.

Checksum offload
IP  checksum  calculation  is  known  to  be  an  expensive 
operation to perform in a host CPU. Most deployed NICs 
provide capabilities  to  offload  checksum calculations for 
both transmit and receive. If the Linux stack must calculate 
a packet checksum, it is done at most once per packet using 

simple arithmetic properties of the checksum to validate or 
set multiple checksums in a packet as necessary.

When encapsulating using UDP, there are at  least  two 
checksums within a packet to be considered: the checksum 
of the encapsulated transport packet and the checksum of 
the  encapsulating  UDP  header.  For  IPv4,  the  UDP 
checksum is optional by setting the checksum field to zero. 
For IPv6, the UDP checksum was originally required to be 
used, however this is relaxed by RFC6936 which allows 
the  IPv6  UDP checksum to  be  zero  for  UDP tunneling 
under certain conditions [16].
Transmit  checksum  offload.  There  are  two methods of 
transmit hardware checksum offload  supported by NICS: 
NETIF_F_HW_CSUM and NETIF_F_IP_CSUM [8].
NETIF_F_HW_CSUM is  a protocol agnostic method to 

offload  the  transmit  checksum.  In  this  method  the  host 
provides  checksum  related  parameters  in  a  transmit 
descriptor  for  a  packet.  These  parameters  include  the 
starting offset  of  data to checksum and the offset  in the 
packet where the computed checksum is to be written. The 
length of data to checksum is implicitly the length of the 
packet  minus the  starting offset.  The host  initializes  the 
checksum  field  to  the  complement  (bitwise  not)  of the 
pseudo header checksum for the transport protocol. In the 
case  of  UDP  encapsulation,  the  checksum  for  an 
encapsulated transport layer  packet,  a TCP  checksum for 
instance,  can  be  offloaded  by  setting  the  appropriate 
checksum parameters. NICs typically can offload only one 
transmit  checksum  per  packet,  so  simultaneously 
offloading both an inner transport packet's checksum and 
the outer UDP checksum is likely not possible. In that case 
setting the UDP checksum to zero and offloading the inner 
transport packet checksum might be acceptable.

To  request  checksum  offload,  a  transport  layer  sets 
checksum related fields in the sk_buff for a packet. The 
starting  offset  for  the  checksum  calculation is  set  in 
csum_start, and the offset where the checksum is  to 
be written  (relative  to  csum_start)  is  set  in 
csum_offset.  The checksum status  field  ip_summed 
is set to CHECKSUM_PARTIAL. The checksum field in the 
transport  header  is  initialized  to the  complement  of  the 
pseudo header checksum for the transport protocol.

Many legacy devices  implement  NETIF_F_IP_CSUM 
instead of NETIF_F_HW_CSUM. This is a limited form of 
checksum  offload  where  a  device  can  only  perform 
transmit  checksum  offload  for  certain  protocol 
combinations.  Originally,  NET_F_IP_CSUM was  only 
applicable to simple TCP/IP and UDP/IP packets, but some 
newer  devices  have  extended  this  to  handle  certain 
instances of VXLAN or NVGRE encapsulation. Because 
NETIF_F_HW_CSUM is protocol agnostic and generic, it 
is generally preferred over NETIF_F_IP_CSUM. 
Functions to initialize UDP checksum. When building a 
packet with UDP encapsulation, an encapsulation method 
can call common functions to initialize the UDP checksum 
field [17].
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The function used when encapsulating in IPv4 is:

void udp_set_csum(bool nocheck,
   struct sk_buff *skb, be32 saddr,     
   be32 daddr, int len)

The function used when encapsulating within IPv6 is:

void udp6_set_csum(bool nocheck,
   struct sk_buff *skb,
   const struct in6_addr *saddr,
   const struct in6_addr *daddr,
   int len)

skb is the sk_buff for the UDP packet.  saddr and 
daddr are the source and destination IP addresses.  len 
is the UDP length which includes eight bytes for the UDP 
header and length of the UDP payload.                             

These functions do one of the following:
• If nocheck is set then zero is written in the UDP 

checksum field. UDP checksum is not enabled.
• Else,  if  the  transmit  device  supports  checksum 

offload of UDP, then checksum offload is set up 
for the UDP checksum.

• Otherwise, the full packet checksum is calculated 
and the proper UDP checksum is written in the 
UDP checksum field. 

Receive checksum offload.  Similar to transmit checksum 
offload, there are two methods that NICs may implement 
for  receive  checksum  offload: CHECKSUM_COMPLETE 
and CHECKSUM_UNNECESSARY [8].

 CHECKSUM_COMPLETE is a technique where a NIC 
computes  the ones  complement  checksum  over  all  (or 
some predefined portion) of a packet. The computed value 
is  provided to the host  in the packet's  receive descriptor 
and saved in the csum field in the packet's sk_buff. The 
host  stack uses this  checksum  to  verify  any  transport 
checksums in the packet (both in inner and outer headers).

As a packet is processed by different protocol layers the 
saved  checksum  value  is  adjusted  to  correspond  to  the 
packet seen at each protocol layer. Adjusting the checksum 
is facilitated by a utility function [18]: 

void skb_postpull_rcsum(
   struct sk_buff *skb,
   const void *start, unsigned int len)

This function is called by a protocol layer to adjust the 
saved csum before passing the packet to the next layer. It 
“subtracts  out”  the  checksum  for  the  current  layer's 
protocol  headers  starting  from start  pointer  for  len 
bytes.  For example, in IPv6  skb_postpull_rcsum is 
called  to  subtract  out  the  checksum  of  the  IPv6  header 
from the  saved  checksum value before passing the  packet 
to  transport layer processing. Interestingly, this function is 
not called in the IPv4 input processing since it is assumed 

that the IPv4 header already has a zero checksum value due 
to the use of IPv4 header checksum. 

Many legacy NICs don't provide the complete checksum 
but  instead  may  explicitly  verify  checksums  within  the 
packet. The device returns an indication to the host that a 
checksum is  verified,  and  the  network  driver  marks  the 
sk_buff  to  indicate  CHECKSUM_UNNECESSARY.  A 
device may validate more than one checksum per packet, 
for instance the outer UDP checksum in encapsulation and 
an inner transport checksum. The  csum_level field in 
the  sk_buff indicates  the  number  of  checksums 
validated  by  CHECKSUM_UNNECESSARY  (the  number 
validated is csum_level plus one). 
CHECKSUM_UNNECESSARY only  works  for  specific 

protocol combinations that a device is capable of parsing. 
For instance, if a new encapsulation protocol were created, 
a  device  supporting  CHECKSUM_UNNECESSARY  might 
need  to  be  updated,  whereas  a  device  supporting 
CHECKSUM_COMPLETE should continue to work without 
change.  For  this  reason,  CHECKSUM_COMPLETE  is 
generally the recommend approach for new devices.
Checksum-unnecessary conversion.  Checksum-
unnecessary conversion is a technique in the Linux stack to 
deduce the complete checksum of a received packet when 
a non-zero UDP checksum has been verified  [19]. This is 
useful in cases where a NIC is only capable of providing 
CHECKSUM_UNNECESSARY for simple UDP/IP packets. 
If  a  UDP  checksum  has  been  verified,  the  ones 
complement checksum of the packet starting from the UDP 
header  equals the  complement  of  the  pseudo  header 
checksum used in UDP checksum calculation.  This is used 
to convert  the CHECKSUM_UNNECESSARY indication for 
the  UDP  checksum  to  CHECKSUM_COMPLETE with  a 
checksum value. Any inner checksums in the packet can 
then  be  verified  by  the  stack  without  performing  a 
checksum calculation over the packet. Most of the work for 
checksum-unnecessary  conversion  is  implemented  in  the 
skb_checksum_try_convert function.

The actions of checksum-unnecessary conversion are:
1. NIC reports in receive descriptor that the transport 

(UDP) checksum for a packet has been verified.
2. Host driver sets  CHECKSUM_UNNECESSARY in 

the sk_buff for the packet.
3. UDP  layer  accepts  that  the  UDP  checksum  is 

valid based on CHECKSUM_UNNECESSARY.
4. UDP socket is matched. If checksum-unnecessary 

conversion  is  configured  for  the  socket  and  the 
UDP checksum is non-zero perform conversion.

5. Calculate the checksum of the pseudo header that 
is used  in  calculating  the  standard  UDP 
checksum.  This  is  a  checksum calculation  over 
the IP addresses and UDP ports in the packet.

6. Set csum in the sk_buff to the complement of 
the pseudo header checksum calculated in step #5. 
Set ip_summed to CHECKSUM_COMPLETE. 
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7. Continue processing  the  packet.  Inner  protocol 
layers  call  skb_postpull_rcsum  so  that 
csum reflects the checksum of the packet for the 
current layer being processed. If an encapsulated 
packet has a checksum (e.g. TCP), the checksum 
complete value is used to validate it.

Remote Checksum Offload. Remote checksum offload is 
a mechanism that provides checksum offload on transmit 
of  encapsulated  packets  using  only  rudimentary  NIC 
offload  capabilities  [20].  This  technique  leverages  UDP 
transmit  checksum  offload  which  is  supported  by  most 
NICs including those that only support NETIF_IP_CSUM. 
The outer UDP checksum is enabled in packets and, with 
some additional meta data, a receiver is able to deduce the 
checksum  to  be  set  for  an  inner  encapsulated  packet. 
Effectively  this  offloads  the  computation  of  the  inner 
checksum to the remote host. The UDP checksum covers 
the whole packet so there is no loss of protection for the 
inner packet.

Remote  checksum  offload  requires  an  encapsulation 
header that allows optional data in the encapsulation. This 
has been implemented for Generic UDP Encapsulation and 
VXLAN  (in  Linux version 3.19)  [21,22,23].  The remote 
checksum data set in an encapsulation header is comprised 
of a pair of checksum start  and checksum offset  values. 
More than one offloaded checksum could be supported if 
multiple  pairs  are  represented.  Checksum  start is  the 
starting  offset  for  checksum computation  relative  to  the 
start  of  the  encapsulated  payload.  This  is  typically  the 
offset of a transport header (e.g. UDP or TCP). Checksum 
offset is the offset where the derived checksum value is to 
be  written  relative  to  the  start  of  encapsulated  payload. 
This  typically  is  the offset  of  the checksum field  in  the 
transport header (e.g. UDP or TCP checksum).
   The typical actions to set up remote checksum offload on 
transmit are:

1. Transport layer  creates a packet and indicates in 
the sk_buff that its checksum is to be offloaded 
to the NIC for normal transport checksum offload. 

2. Encapsulation layer adds its headers to the packet 
including the optional data for remote checksum 
offload. The start offset and checksum offset are 
set  per  csum_start  and  csum_offset in 
the sk_buff.

3. Encapsulation  layer  arranges  for  hardware 
checksum  offload  of  the  outer  UDP checksum, 
this  overrides  the  offload  parameters  set  in  the 
sk_buff for the transport layer checksum.

4. Packet is sent to the NIC. The NIC will perform 
transmit checksum offload and set the checksum 
field in the outer UDP header. The inner headers 
and  rest  of  the  packet  are  transmitted  without 
modification.

The  typical  actions  a  host  receiver  does  to  support 
remote checksum offload are:

1. Receive  packet  and  validate  outer  checksum 
following  normal  processing  (ie.  validate  non-
zero UDP checksum).

2. Deduce complete checksum for the packet. This is 
directly provided if the device returns the packet 
checksum  in  CHECKSUM_COMPLETE.  If  the 
device  returned  CHECKSUM_UNNECESSARY, 
checksum-unnecessary conversion can be done to 
deduce the checksum

3. From the packet checksum, subtract the checksum 
computed from the start  of the packet  (outer  IP 
header)  to  the  offset  in  the  packet  indicated  by 
checksum start in the optional data. The result is 
the  deduced  checksum  to  set  in  the  checksum 
field of the encapsulated transport packet.

4. Write the resultant checksum value into the packet 
at the offset provided by checksum offset  in the 
optional data.

5. Checksum is verified at the transport layer using 
normal  processing.  This  should  not  require  any 
checksum computation over the packet since the 
complete checksum has already been deduced.

Segmentation Offload

Segmentation offload refers to techniques that attempt to 
reduce CPU utilization  on hosts  by having  the  transport 
layers  of  the stack operate on large packets.  In transmit 
segmentation  offload,  a  transport  layer  creates  large 
packets greater  than MTU size (Maximum Transmission 
Unit).  It  is  only  at  much  lower  point  in  the  stack,  or 
possibly the NIC, that these large packets are broken up 
into  MTU  sized  packet  for  transmission  on  the  wire. 
Similarly,  in receive segmentation offload, small packets 
are coalesced into large, greater than MTU size packets at 
a  point  low  in  the  stack  receive  path  or  possibly  in  a 
device.  The  effect  of  segmentation  offload  is  that  the 
number  of  packets  that  need to  be  processed in  various 
layers of the stack is reduced, and hence CPU utilization is 
reduced. 

The  Linux  stack  supports  TCP  segmentation  offload 
and UDP fragmentation offload. For UDP encapsulation, 
TCP segmentation is the primary interest.
Generic  Segmentation  Offload.  Generic  
Segmentation Offload, or  GSO, is software feature of the 
Linux networking stack which allows the stack to create 
large,  greater  than  MTU  size  TCP  packets  [24]. 
Immediately before  handing off  a  packet  to  a driver  for 
transmission, GSO  splits the packet into separate smaller 
packets of size less than or equal to the MTU. 

The  packets  created  by  GSO need  to  have  their  own 
headers,  and  certain  fields  in  these  headers  need  to  be 
explicitly  set  on  a  per  packet  basis.  For  each  created 
segment the general process is:

1. Replicate  the  TCP  header  and  all  preceding 
headers of the original packet.
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2. Set payload length fields in any headers to reflect 
the length of each new segment.

3. Set the TCP sequence number to correctly reflect 
the offset of the TCP data in the stream.

4. Recompute  and  set  any  checksums  that  either 
cover the payload of the packet or a cover header 
which was changed by setting a payload length.

In  Linux,   skb_gso_segment  is  called  by  the 
networking stack to perform segmentation of a large packet 
before transmission. skb_gso_segment calls a series of 
chained  callbacks  for  each  protocol  layer  of  the  packet, 
usually starting from the Ethernet layer. Each protocol that 
participates  in  GSO  implements  a  gso_segment 
function  which  returns  the  created  packets  in  a  list  of 
sk_buffs.  Each  GSO  function  does  two  things.  First 
gso_segment is called for the next layer protocol. The 
lowest  layer  GSO  function  (e.g.  tcp_gso_segment) 
calls  skb_segment to  actually  create  the  packets.  For 
each  packet  created,  protocol  headers  are  simply  copied 
from  the  large  packet.  Upon  return  from  calling 
gso_segment for the next layer (or skb_segment), a 
protocol  layer  sets  header  fields  in  each  new packet  to 
reflect the segmentation. For instance, the IP layer needs to 
set the total length field in each packet before returning.

The  sk_buff structure  includes  a  field  gso_type 
which  contains  a  set  of  flags  describing  the  affected 
protocol  layers  and  parameters  for  a  large  GSO packet. 
These flags have the form SKB_GSO_*.  For example, an 
IPIP packet containing an encapsulated TCP packet would 
include  types  SKB_GSO_IPIP and  SKB_GSO_TCP. A 
packet  with  UDP  encapsulation  would  include 
SKB_GSO_UDP_TUNNEL if zero UDP checksum is to be 
set  on transmission,  or  SKB_GSO_UDP_TUNNEL_CSUM 
if UDP checksums are enabled.

In the case of GSO with encapsulation, the stack initially 
performs  encapsulation  on  the  large  packet.  The 
encapsulation layer sets the inner headers appropriately in 
the sk_buff and also sets the inner_protocol value 
to correspond to the encapsulated packet (this can be an IP 
protocol or Ethertype). The UDP GSO handler will detect 
that  a  packet  is  UDP  encapsulated  when  the 
encapsulation  bit  is  set  in  the  sk_buff and  the 
gso_type includes  SKB_GSO_UDP_TUNNEL_*.  The 
UDP GSO handler will call the  gso_segment function 
for  the  encapsulated  protocol  based  on  the  value  in 
inner_protocol.  Any  additional  encapsulation 
headers between the start of the UDP payload and the start 
of  the  encapsulated  packet  (indicated  by  the  offset  in 
inner_mac_header) are treated as  being opaque and 
just  copied  into  each  segment.  This  allows  a  generic 
encapsulation  that  works  with  any  UDP  encapsulation 
protocol  as  long it  does  not  have  fields  that  need  to  be 
explicitly set on a per segment bases. 
Large  Segmentation  Offload.  Many  NICs  provide 
Large  Segment  Offload (LSO)  for  performing  transmit 
segmentation offload in hardware [25]. This is called TCP 

Segmentation  Offload (TSO)  when  applied  to  TCP 
segmentation.  Since  LSO  happens  in  the  device,  it  can 
provide better performance compared to GSO.

The  process  of  LSO  is  similar  to  that  of  GSO.  The 
hardware  is  provided  a  large  packet  for  transmission.  It 
splits the large packet into smaller packets properly setting 
lengths,  checksums,  sequence  numbers  in  each  packet's 
headers.

Devices typically only support a subset of protocols for 
LSO that  the  stack  supports  for  GSO.  Drivers  indicate 
supported  protocols  for  LSO  by  setting  flags  in  their 
advertised feature flags.  These flags typically correspond 
to  equivalent  SKB_GSO_* flags.  For  instance, 
NETIF_F_GSO_UDP_TUNNEL would  indicate  that  a 
device  is  capable  of  performing LSO on a UDP tunnel. 
Some devices may support an offload with constraints, for 
instance the encapsulation headers might  need to be less 
than a certain  length.  In  these  cases,  drivers  may define 
ndo_features_checks which is called from the core 
transmit  path  to  determine  if  a  device  is  capable  of 
performing offload operations on a given packet [26]. This 
function gives the driver an opportunity to implement any 
restrictions that cannot be otherwise expressed by feature 
flags. If it is determined that a device cannot perform LSO 
for a packet, the stack will always fall back to doing GSO. 

To  implement  LSO  with  UDP  encapsulation,  it  is 
desirable  that  the  implementation  is  agnostic  to  the 
particular method of UDP encapsulation. This is possible 
assuming that  encapsulation  headers  don't  include  fields 
that need to be updated for each segment. In this case the 
NIC would be provided with the offset of the inner MAC 
header (or inner network header), so that for each segment 
the bytes from the start of the UDP payload to the inner 
MAC header are just copied from the large packet.
Generic Receive Offload. Generic Receive Offload, or 
GRO,  is  feature  of  the  Linux  networking  stack  which 
coalesces packets for a flow (usually for TCP) into large 
packets  before  being  subjected  to  higher  layer  protocol 
processing [27]. The GRO functions are called as early as 
possible in the network receive path in order to maximize 
the benefits.

In Linux, network drivers call napi_gro_receive to 
handoff received packets to the stack. If the GRO feature is 
enabled on the receiving device, the stack will attempt to 
perform  GRO  coalescing  on  the  packet.   For  each 
networking  device,  a  list  of  flows  being  coalesced  is 
maintained.  The  structure  for  each  flow  holds  a  list  of 
packets  that  have  been  matched  to  belong  to  the  same 
network flow and are being coalesced. The GRO operation 
is to try to match a received packet with one of the flows. 
If a flow is matched and the packet is next in sequence for 
the  flow,  it  can  be  coalesced.  The  list  of  flows  being 
coalesced is created on demand, so if  a packet does not 
match an existing flow a new one is added to the device's 
list.
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To  match  a  packet,  a  series  of  chained  callbacks 
(gro_receive functions)  is  called  for  each  protocol 
layer of the packet usually starting at Ethernet. Before the 
callbacks,  the  stack  marks  each  recorded  flow  as  a 
candidate for matching the packet (same_flow is set for 
each flow in the list). At each callback, a protocol layer 
considers whether the packet matches the flows based on 
characteristics of the particular protocol layer (for instance 
IP addresses are compared in the IP layer). For flows that 
do  not  match  they  are  marked  to  not  be  a  candidate 
(same_flow is  cleared).  A  protocol  callback  can  also 
mark a packet to be flushed so that no further attempt is 
made to match the packet and it will be received directly 
by the stack.

Upon return from the gro_receive calls, if there is a flow 
in the device list that matches the packet  (same_flow is 
set) then the packet is coalesced into the flow. Otherwise, 
the  packet  is  either  received  normally  (when marked  to 
flush), or a new flow is created for the received packet.

Coalesced packets are sent into the stack for processing 
when  napi_gro_flush is  called.  This  is  normally 
called  at  NAPI  completion  (NAPI  is  the  soft  interrupt 
processing for a receive network interrupt).  For each large 
packet  created,  another  series  of  chained  callbacks 
(gro_complete functions)  are  called  to  finalize  the 
GRO coalescing.

To  support  GRO  with  UDP  encapsulation, 
gro_receive and  gro_complete need to be called 
for  the  specific  encapsulation  method  which  essentially 
means that the functions need to be associated with a UDP 
port.  To  provide  for  this,  a  facility  to  register  offload 
callback functions per UDP port was introduced [28]. In 
the  UDP  GRO  functions  (udp_gro_receive  and 
udp_gro_complete), the destination port of a packet is 
looked up in the list of registered offloads. If a match is 
found,  the  corresponding  gro_receive or 
gro_complete function  for  the  UDP  port  is  called. 
udp_add_offload and udp_del_offload are used 
to register and unregister the per port offload functions.

The gro_receive and gro_complete functions for 
an  encapsulation  method  need  to  call  the  functions 
associated with the protocol of the encapsulated packet. If 
the  protocol  is  carried  in  an  additional  encapsulation 
header (like in GUE), the packet can be parsed to retrieve 
this. If the protocol is saved in the receive socket (like in 
FOU), this value is passed by the UDP layer in the control 
buffer  (cb)  of  the  sk_buff for  a  packet. If  the 
encapsulation method includes an encapsulation header, its 
fields should be considered when matching flows; the most 
straightforward implementation is to compare all the bytes 
in the encapsulation header.
Large Receive Offload. Large Receive Offload (LRO) is a 
NIC  feature  where  packets  of  a  TCP  connection  are 
coalesced in the NIC and delivered to the host as one large 
packet [29]. LRO is analogous to GRO, requires significant 
protocol  awareness  to  be  implemented  correctly,  and is 

difficult to generalize.  The NIC must be informed of the 
port number for a supported UDP encapsulation method. 
Packets  in  the  same  flow  need  to  be  unambiguously 
identified.  In  the  presence  of  tunnels  or  network 
virtualization,  this  may  require  more  than  a  five-tuple 
match (packets for flows in two different virtual networks 
may have identical five-tuples). Additionally, a NIC needs 
to  perform  validation  over  packets  that  are  being 
coalesced,  and  needs  to  fabricate  a  single  meaningful 
header from all the coalesced packets.

The conservative approach to supporting LRO for  UDP 
encapsulation would be to match packets to the same flow 
only if they were encapsulated  exactly  the same way  and 
both the outer and inner headers match. That is the outer IP 
addresses,  outer ports,  inner protocol,  inner IP addresses 
or Ethernet addresses, inner transport layer ports, and  any 
additional encapsulation headers are all identical.

UDP Encapsulation protocols

Several  protocols  can  be  encapsulated  over  UDP in  the 
Linux  networking  stack.  L2TP  (Layer  two  tunneling 
protocol) and ESP (Encapsulating Security Payload)  may 
be  configured  to  be  encapsulated  directly  within  UDP. 
VXLAN (Virtual  Extensible LAN) and Geneve (Generic 
Network Virtualization Encapsulation) are relatively new 
encapsulation techniques targeted towards carrying Layer 2 
packets  for  network  virtualization.  [30,31]  Two  generic 
encapsulation techniques of the Linux stack are Foo-over-
UDP and Generic UDP Encapsulation; these are discussed 
in more detail below.

Figure 2. Protocol headers for encapsulation of an IP packet. The 
figure on the left depicts FOU encapsulation, the destination port 
in the UDP header implies that the UDP payload is an IP packet.  
The  figure  on  the  right  illustrates  GUE  encapsulation,  the 
proto/ctype field in the GUE header is set to 4 indicating IPv4  
encapsulation.

Foo-over-UDP

Foo-over-UDP (FOU) is a feature of Linux which allows 
packets of any IP protocol to be directly encapsulated in 
UDP [32]. As depicted in figure 2, FOU does not define an 
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encapsulation header,  so the protocol  of an encapsulated 
packet  is  inferred  from  the  destination  UDP  port.  For 
instance, a server may open port 5555 which receives IP 
over UDP (IP packets encapsulated within UDP). A peer 
may send an encapsulated IP packet in UDP to this port 
with  no  additional  encapsulation  headers.  Logically,  the 
UDP header for FOU encapsulation is inserted in a packet 
on encapsulation, and removed on decapsulation.

The  receive  side  of  FOU  is  implemented  in  the  fou 
kernel  module.  Configuration  is  really  just  a  matter  of 
setting up a UDP port to be the recipient of encapsulated 
packets. The "fou" subcommand of “ip” is intended for 
this purpose: 

    ip fou add port 5555 ipproto 4

The  port keyword  indicates  the  port  number  for  the 
encapsulation  and  ipproto indicates  the  associated  IP 
protocol. So this command sets aside port 5555, saying that 
packets arriving there will have IP protocol 4, which is IP 
encapsulation.  Packets received on that port will have the 
encapsulating UDP header removed; and are then fed back 
into the network stack for IP layer processing of the inner 
packet.

Upon opening a FOU socket, the encap_rcv callback 
is set to fou_udp_recv which is the FOU UDP receive 
function. The configured IP protocol is kept in the private 
data for the socket. When receiving a packet the stack calls 
fou_udp_recv via  encap_rcv.  This  function 
logically removes the UDP header in the packet by setting 
the  sk_buff's transport_header to  refer  to  the 
UDP  payload  (encapsulated  packet).  The 
total_length field in the IP header is reduced by eight 
bytes for the UDP header, so that to the stack the resulting 
packet is an IP header followed by the encapsulated packet. 
fou_udp_recv returns  the  negative  of  the  protocol 
number stored in the socket; this serves as an indication to 
the  stack  the  packet  should  be  re-injected  for  transport 
protocol processing with the protocol layer referred to by 
the returned number.

On the transmit side, IPIP, SIT, and GRE tunnels have 
been  updated  to  allow  FOU  encapsulation.  FOU  is 
effectively  treated  as  another  attribute  of  a  tunnel.   A 
typical  command  to  configure  a  tunnel  with  FOU 
encapsulation might look like: 

    ip link add name tun1 type ipip \
     remote 192.168.1.1 \
     local 192.168.1.2 \
     ttl 225 \
     encap fou \
           encap-sport auto \
           encap-dport 5555

This command will set up a new virtual interface (tun1) 
configured for IPIP  encapsulation over UDP. The  encap 

keyword indicates that the IP tunnel is being encapsulated 
(choices currently are fou and gue).  encap-sport indicates 
the source port where auto as the argument means that the 
source port is is automatically set by the stack based on the 
inner flow identifier  by calling  udp_flow_src_port. 
Encap-dport indicates the destination port to use. In  the 
this  example  the  destination UDP port  is  5555,  and  the 
source port is automatically set by the stack.

Generic UDP encapsulation

Generic  UDP  Encapsulation  is  a  general  method  for 
encapsulating packets of arbitrary IP protocols within UDP 
[33,34].  GUE  defines  an  encapsulation  header  which 
immediately follows the UDP header as shown in figure 2. 
The  GUE  header  has  an  extensible  format  to  allow 
carrying  of  optional  data.  This  optional  data  potentially 
covers items such as virtual networking identifier, security 
data  for  validating  or  authenticating  the  GUE  header, 
congestion  control  data,  etc.  GUE  also  allows  private 
optional data in the encapsulation header; this can be used 
by a site or implementation to define custom optional data.
GUE Header Format. The header format for version 0x0 
of GUE in UDP diagrammed in figure 3.

Figure 3. UDP and GUE headers in Generic UDP Encapsulation. 
The  UDP  header  is  always  eight bytes,  the  GUE  header  is 
variable length composed of a fixed four byte header followed by 
optional data fields.

The contents of the UDP header are:
• Source port: (inner flow identifier): This should 

be set to a value that represents the encapsulated 
flow. 

• Destination port: Set to port number for GUE.
• Length:  Canonical  length  of  the  UDP  packet 

(length of UDP header and payload). 
• Checksum: Standard UDP checksum.

The GUE header consists of:
• Version  number:  Version  number  of  the  GUE 

protocol.
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• C: Control bit. When this bit is set the payload is 
a control message, when not set the payload is a 
data  message  (encapsulated  packet  of  an  IP 
protocol).

• Hlen: Length in 32-bit words of the GUE header, 
including optional  fields  but  not  the  first  four 
bytes of the header.  Note that each  field in GUE 
has a size which is a multiple of thirty-two bits so 
there is no need for padding.

• Proto/ctype:  When  the  C  bit  is  set,  this  field 
contains  a control  message  type  in the payload. 
When  C  bit  is  not  set,  the  field  holds  the  IP 
protocol  number  for  the  encapsulated  packet  in 
the payload. The control message or encapsulated 
packet begins at the offset provided by Hlen.    

• Flags:  Header  flags  that  may  be  allocated  for 
various  purposes  and  may  indicate  presence  of 
optional  fields.  Undefined header  flag bits must 
be set to zero on transmission.

• P: Private flag. Indicates presence of private flags 
field in the optional fields.

• Fields:  Optional  fields  whose  presence  is 
indicated by corresponding flags.

• Private flags: An optional field indicated by the P 
bit. This field is  a set of private flags which may 
in turn indicate presence of private fields.

• Private  fields:  Optional  fields  that  are  present 
when a corresponding bit  in  the  private flags  is 
set.

GUE  characteristics.  The protocol  type  in  a  GUE data 
message allows the use of any IP protocol number.  This 
includes  Layer  2  encapsulation  (EtherIP),  Layer  3 
encapsulations  of  IPv4  and  IPv6  packets,  as  well  as 
encapsulation of layer 4 packets such as TCP or UDP. In 
the  latter  case,  also  referred  to  as  transport  mode 
encapsulation, the outer IP header is the header for the both 
the  outer  UDP  and  the  encapsulated  transport  protocol 
packet;  if  the  inner  transport  protocol  has  a  checksum 
which includes an IP pseudo header, the pseudo header is 
based on the outer (only) IP header.

Flags  and  associated  optional  fields  are  the  primary 
mechanism of extensibility in GUE. There are sixteen flag 
bits  in  the  GUE  header,  one  of  which  is  reserved  to 
indicate the presence of a private flags optional field.

A flag may indicate presence of optional fields. Fields 
contain optional  data.  Field sizes are multiples  of thirty-
two bytes, and the size of an optional field indicated by a 
flag  must  be  fixed.  Fields  are  processed  in  a  manner 
similar to GRE processing. They are arranged in the packet 
in the order of the flags  that  indicate their presence,  the 
offset of a particular field is determined by the sum of all 
the sizes of preceding fields that are present in the header.

Flags  and  fields  had  been  defined  for  network 
virtualization  identifiers,  security  data,  GUE  header 
checksum, and remote checksum offload. 

GUE implementation.  Similar  to FOU, the  Linux GUE 
implementation separates the transmit and receive path.

The  receive  side  of  GUE  is  implemented  in  the  fou 
module.  Upon opening  a  GUE socket,  the  encap_rcv 
callback  is  set  to  gue_udp_recv  to  receive packets 
encapsulated  using GUE. Configuration  is  performed  by 
using  the  “fou”  subcommand  of  “ip”  with  gue as  a 
parameter:

    ip fou add port 7777 gue

This command sets aside port 7777, saying that packets 
arriving there are encapsulated with GUE as indicated by 
the  gue keyword.  Packets  received  on  that  port  are 
processed by  gue_udp_recv.  They are verified to be 
valid GUE packets, and if the GUE header contains options 
these are processed also. If the packet cannot be verified, 
required  security  credentials  are  not  present,  or  the 
encapsulation  is  otherwise  malformed then the  packet  is 
dropped. For an acceptable packet, the encapsulating UDP 
and  GUE  headers  are  removed  by  adjusting 
transport_header in the  sk_buff to refer  to the 
encapsulated packet, and the packet is then fed back into 
the network stack for processing the inner packet similar to 
FOU handling. The IP protocol of the encapsulated packet 
is  taken  directly  from the  proto/ctype field in GUE 
header,  this  can  conceptually  be  any  legal  IP  protocol 
number. 

Similar to FOU, on the transmit side the IPIP, SIT, and 
GRE tunnels have been updated for GUE encapsulation. 
A typical configuration command might look like: 

ip link add name tun1 type ipip \
     remote 192.168.1.1 \
     local 192.168.1.2 \
     ttl 225 \
     encap gue \
           encap-sport auto \
           encap-dport 7777 \
           encap-udp-csum \
           encap-remcsum

This command will set up a new virtual interface (tun1) 
configured  for  IPIP  encapsulation  using  Generic  UDP 
Encapsulation.  The destination UDP port is  7777, and the 
source port is automatically set by the  stack.  Packets sent 
on this tunnel are encapsulated in a UDP and GUE header 
where the next protocol in the GUE header is set to 4 (for 
IPIP).   In  this  example  the  UDP checksum  and  remote 
checksum  offload  are also  enabled  by  the  encap-udp-
csum and encap-remcsum keywords

Conclusion

Support  for  UDP  encapsulation  is  an  impressive 
achievement  in  the  Linux  networking  stack  and  is  the 
result of a broad community effort with many contributors. 
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Further development,  new  encapsulation  features  and 
protocols,  and  new  use  cases  for  encapsulation  will 
continue to contribute to the importance and utility of UDP 
encapsulation in the data center.
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