Breaking Open Linux Switching Drivers

Andy Gospodarek

Cumulus Networks, Inc
Mountain View, California, USA
gospo@cumulusnetworks.com

Abstract
Ever wonder what the next generation of network forwarding
devices will look like? Some will simply switch and route traffic
in a manner that is similar to what is seen now, others may
communicate with an external controller to determine forwarding
options. Yet another class of systems will be created and their use
will not be known as they will stay hidden inside datacenters with
features completely unknown to the users whose data transits the
network. It may be difficult to predict exactly which features will
be included, but one feature that is an almost certainty is they will
be running a Linux kernel. While many of the devices in use
today are running Linux there is little collaboration around this
effort as the forwarding ASICs are only enabled by the use of
closed-source SDK and out-of-tree kernel drivers and modules
provided by the hardware vendor. This paper will provide some
historical background on the current situation and propose a way
to enable rapid, zero-cost development on datacenter-grade
ASICs by starting the process of ~ Breaking Open these SDKs to
provide an infrastructure that may allow for inclusion in the
upstream Linux kernel.

Introduction

Linux has been the operating system of choice for
hardware switches and routers for the better part of the last
two decades. Most users did not know this as direct access
to the operating system and hardware were hidden behind a
shiny (or dull) user-interface. Community projects like
(OpenWRT/DD-WRT/etc) provided users the first chance
to use standard FOSS networking tools to configure and
manage devices and products like Cumulus Linux and
projects like Open Route Cache have taken this a step
further to support enterprise and data-center grade top of
rack switches using open-source tools and infrastructure --
though today they still rely on out-of-tree kernel drivers
and a vendor-licensed SDK.

The goal of this paper is to present a viable alternative
for how current vendor switching and routing hardware can
be made significantly more usable by kernel and
application developers by moving away from the current
model and towards a model with zero software integration
cost. Today, most Linux users of datacenter hardware
currently interact with network devices that are presented
as tun/tap devices and use of tree kernel drivers to access
hardware. This combination does not allow access to
hardware information or configuration (how are the

ethtool ops for tun/tap working?) and it currently provides
no ability to leverage the recently merged offload
(switching and routing) infrastructure that has recently
made it into the upstream kernel. Though this paper
proposes a solution that requires reliance on a vendor-
licensed SDK, releasing and adding this driver to the
upstream kernel is the first step towards a goal of
simplified data-plane programming. This paper includes: a
description of the architecture of this driver as it compares
to the typical vendor implementation, the relationship and
communication between this driver and the current vendor-
licensed SDK, and plans for the future growth of this into a
stand-alone driver with minimal (if any) SDK reliance.

How did we get here?

ASIC Vendor SDK Architecture

Despite the fact that Linux was an operating system
supported by network ASIC vendors for 10+ years, little
has changed in the way of architecture or methods by
which systems were administered or controlled over that
time period. Most ASIC vendors provide a minimal kernel
driver that binds to the PCle devices and allows a
userspace SDK to read and write to the mmap'd hardware
as needed. The control-plane path is shown below:

Vendor SDK

Socket applications

|swp1'swp2'sprI

Virtual Devices
(tun/tap)

Vendor Driver

Network ASIC

This architecture has largely remained unchanged over
the last decade. There are some newer alternatives from
some ASIC vendors that provide kernel modules that allow
switch ports to look more like actual in-kernel netdevs, but

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

are designed in the same spirit as those that rely on tun/tap
for control-plane traffic and do not offer assistance with
data-plane programming.

System Vendor Software Architecture

Due to the fact that no Linux kernel integration exists for
data-plane programming of these ASICs, system and
software vendors who want to use them in their platform
must write a non-trivial amount of software to provide
date-plane programming to the chosen network ASIC.

Though recent efforts to develop a switching abstraction
layer (SAI) for offload devices by the Open Compute
Project' aim to make software integration easier for
vendors, there is no mention of a requirement to use the
Linux kernel or kernel drivers to be compliant with the
specification. This means that data-plane programming
can vary widely. Some system vendors may choose a
model where the kernel has little to no knowledge of the
forwarding hardware and a proprietary management
application will communicate directly with a vendor SDK
to program the data-plane.

Proprietary
Management
Application/Ul

Vendor SDK

Vendor Driver

Network ASIC

The specific reasoning behind the apparent lack of
interest in Linux kernel integration in SAI remains
unknown, but the fact remains that is is not a requirement
and therefore significant effort will need to be taken to
integrate support for any vendor hardware that supports
SAIL It is important to note that each vendor will want to
have their own method for configuration and will likely
wrap this configuration around a user-interface that does
not revolve around the standard FOSS tools used to
configure network devices on traditional Linux systems
(servers, workstations, laptops, et al).

These user-interfaces are not problematic by themselves
(in fact a large contingent of network administrators have
spent years gaining certifications centered around the
ability to control these devices). They do not offer the

flexibility one gets from being able to configure systems
using tools familiar to most server administrators and
therefore do not enable rapid feature development.

Hardware Platform Performance and Availability
Most of the commercial networking platforms sold in the
past contained low-power and lower-than-server-
performance host processors. This was mainly to save cost
and power, but also quite practical. The network ASIC
performed most of the forwarding and little work was done
by the host processor. Due to the fact that these systems
were not powerful, there was minimal interest from the
traditional Linux distribution vendors or from the upstream
Linux kernel community. Now that we are in the middle of
what some would call the rise of Bare-Metal Switching ,
more powerful systems with networking ASICs are
available, used in large-scale datacenters', and available for
purchase with or without software installed 2. The
availability of these platforms and their ability to easily
boot an upstream kernel or standard Linux distributions
makes developing applications on these platforms a viable
option.

In-Kernel Network Offload Infrastructure
Based on efforts by developers and reviewers from
multiple organizations there is some initial infrastructure
in the upstream Linux kernel to support network ASICs
capable of offloading data-plane forwarding. Included
with this infrastructure was the ability to program an
emulated offload device known as rocker.

3

This infrastructure is an excellent first step on the road to
full in-kernel support for hardware devices, but Linux
kernel drivers for datacenter-class network ASICs that use
this infrastructure will enable the development of the next-
generation of forwarding devices more rapidly than
support for an emulated device.

What are the next steps?

Opening of most SDKs seems unlikely

Whether speaking to someone directly who works for one
of the network ASIC vendors or reading the specifications
produced like those from the Open Compute Project's
Networking Group * it becomes clear that most hardware
vendors have little interest in sharing all code available in
their user-space SDK with the community. There are likely
a variety of reasons why this is the case, but the fact
remains that re-licensing the SDK in a manner that will
allow inclusion in the Linux kernel or some other FOSS
package is unlikely. At least until the current Linux kernel
offload infrastructure is given a chance to develop further.

This places those that share my vision for how the Linux
kernel can become the abstraction layer for network ASICs
in a difficult position. If we cannot convince ASIC
vendors to open-source their SDKs are those with access to
those SDKs forced to keep the code they develop

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

proprietary? Are we destined to spend the next decade like
the last with no upstream code added to drive this
hardware?

The case for a bifurcated driver

Any vendor that wants to have an upstream driver for their
network ASIC must realize there are two components
needed to drive upstream acceptance for any network
offload device: the ability to abstract front panel ports as
network devices and the ability to program the network
ASIC offload the forwarding of traffic when requested.

Network Driver

This portion of their driver should be quite familiar to
anyone who has written a network driver in the past. Basic
functionality to make ports on a NIC appear as net devices
to the Linux kernel are:

* Knowledge of platform port topology

* Capability to interact with PHY and other
components needed to establish connectivity

* Ability to request interrupts and service them

* Ability to transmit and receive frames on
individual ports

Any network ASIC vendor should be able to easily meet
the above criteria without the need to rely on an SDK.
This portion of the driver would not enable offload
capability, but would give the vendor, users, and
developers the opportunity to test and develop applications
using a full FOSS stack with software-based paper
forwarding. The architecture would be something like the
following of no offload capabilities were enabled with the
upstream Linux kernel driver and each switch port was
exported as a single NIC:

Socket Applications

swplffswp2[SlswpN Upstream
NIC Driver

Network ASIC

Support for Offload Operations
Though the dream of a zero-cost software integration
model could be lost without inclusion of the SDK in the

kernel, there is hope! If one accepts that today and for the
foreseeable future user-space SDKs are not going away, it
is easy to envision a design where userspace and kernel-
space co-operatively program hardware through the Linux
kernel's offload infrastructure.

In this implementation communication between an
offload compatible kernel driver and userspace would
allow kernel operations to call back to userspace and
perform the needed date-plane programming. Some would
all this a Trampoline Driver. The architecture of a driver
like this might look like the following:

Socket Applications/
Management Tools
(bridge/iproute2/etc)

Vendor SDK

) /
swplpswp2flswpN
I_J_pr P up |Off|0ad OpsIOfroad Driver

Upstream

Network ASIC

A sample driver implementation of a call to an external
application like this may look like the following:

static const struct net_device_ops VENDOR_swp_netdev_ops = {

[...]
.ndo_fdb_add
[...]

= VENDOR_swp_fdb_add,

+;

static int VENDOR_swp_fdb_add(struct ndmsg *ndmsg,
struct nlattr *xtb[],
struct net_device xdev,
const unsigned char addr,
ulé vid,
ul6 nlmsg_flags)

struct VENDOR_msg_struct xvendor_msg;

if (!VENDOR_prep_msg(vendor_msg, dev, addr, vid, flags))
return —-EINVAL;

if (!VENDOR_msg_send(vendor_msg))
return —ENODEV;

return VENDOR_msg_ack(vendor_msg—>cookie);

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

I do not specifically want to advocate for what type of
messaging implementation is used by VENDOR_msg_send. It
could be backed by a synchronous socket send/receive or
ioctls. It may be backed by asynchronous genl netlink
messages or hardware mailboxes. One might say this
interface is an implementation detail left up to the user.

The reasons not to specifically standardize that
communication channel or API used between a userspace
SDK and the Linux kernel is to prevent that API from
becoming the standard. That will serve no purpose other
than to virtually guarantee that these SDKs will unlikely
migrate to the Linux kernel since there is already a
commoditizing interface.

References

1. Bare-Metal/White-Box Switching Market Share
Accessed Jan 2015
http://blogs.gartner.com/andrew-lerner/2014/09/02/hellowhitebox/
2. White-box platform availability based on hardware
supported by ONIE

Accessed Jan 2015
http://www.opencompute.org/wiki/Networking/ONIE/HW_ Status

The Case for a Trampoline Offload Driver?

The design of this proposed driver may be somewhat
controversial to the upstream kernel community. While the
software architecture does differ from most other pure-
hardware drivers, it provides a balance that allows
developers to create a fully-featured network offload
software implementation for the Linux kernel backed by
real hardware while still allowing vendors to hold on to
userspace SDKs. Once this in-kernel offload model is
proven and working well, the race will begin to see who
decides to drop their closed-source SDK and Break Open
first.

3. net: introduce generic switch devices support

Accessed Jan 2015

http://patchwork.ozlabs.org/patch/415861/

4. Open Compute Project - Networking Specs and Designs
Accessed Jan 2015

http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch
_Abstraction_Interface

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://www.opencompute.org/wiki/Networking/ONIE/HW_Status
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Interface
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Interface
http://patchwork.ozlabs.org/patch/415861/
http://blogs.gartner.com/andrew-lerner/2014/09/02/hellowhitebox/

