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Agenda
● Recap: offload models, offload drivers
● Introduction to switch asic hardware
● L2 offload to switch ASIC

○ Mac Learning, ageing
○ stp handling
○ igmp snooping
○ vxlan

● L3 offload to switch ASIC



Offload models ...
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switch driver:

● Creates netdevs for front 
panel ports

● Port netdevs only see traffic 
forwarded to the CPU port

● Sets hardware offload flag
NETIF_F_HW_SWITCH_OFFLOAD

on netdevs



ip link show switch ports

# ip link show

1: lo: <LOOPBACK> mtu 16436 qdisc noqueue state 
DOWN mode DEFAULT 

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:
00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> 
mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000

    link/ether 00:e0:ec:27:4e:b6 brd ff:ff:ff:ff:ff:ff

3: swp1: <BROADCAST,MULTICAST,UP,LOWER_UP> 
mtu 1500 qdisc pfifo_fast state UP mode DEFAULT 
qlen 500

    link/ether 44:38:39:00:27:ac brd ff:ff:ff:ff:ff:ff

4: swp2: <BROADCAST,MULTICAST> mtu 9000 qdisc 
pfifo_fast state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:b8 brd ff:ff:ff:ff:ff:ff

[snip]

55: swp53: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:f7 brd ff:ff:ff:ff:ff:ff

56: swp54s0: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fb brd ff:ff:ff:ff:ff:ff

57: swp54s1: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fc brd ff:ff:ff:ff:ff:ff

58: swp54s2: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fd brd ff:ff:ff:ff:ff:ff

59: swp54s3: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fe brd ff:ff:ff:ff:ff:ff

management port

switch ports



ethtool on switch port
$ethtool swp1
Settings for swp1:

Supported ports: [ FIBRE ]
Supported link modes:   1000baseT/Full 
                        10000baseT/Full 
Supported pause frame use: Symmetric 

Receive-only
Supports auto-negotiation: Yes
Advertised link modes:  1000baseT/Full 
Advertised pause frame use: No
Advertised auto-negotiation: No
Speed: 10000Mb/s
Duplex: Full
Port: FIBRE
PHYAD: 0

Transceiver: external
Auto-negotiation: off
Current message level: 0x00000000 

(0)
Link detected: yes



Creating a hardware accelerated Linux bridge 
device

# ip link add br0 type bridge

# ip link set dev swp1 master br0

# ip link set dev swp2 master br0

# bridge vlan add vid 10-20 dev swp1

# bridge vlan add vid 20-30 dev swp2



Bonds as bridge ports
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Bridging hardware offload: packet path

● Known unicast traffic not destined to system is 
forwarded only in hardware

● BUM traffic is forwarded in hardware plus a copy MAY 
be sent to kernel

● BUM traffic in kernel should not be forwarded again 
(duplicate copies from hardware and software)



Bridging hardware offload: fdb learn
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Bridging hardware offload: learning in HW

● Turn off learning in bridge driver
● switch driver listens to learn notifications from hardware
● converts hardware interface id and vlan to kernel ifindex of bridge 

port (and vlan) and bridge
● sends netlink fdb update to kernel (userspace driver) or calls bridge 

driver learn sync switchdev API (kernel driver)



Bridging hardware offload: kernel ageing
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Bridging hardware offload: hardware ageing
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Bridging hardware offload: ageing
Bridge driver very seldom sees packets with hardware offload.  FDB 
age is not up to date.
Hardware ageing
● bridge driver should not do ageing if hardware is doing it
● fdb show will need to get age from hardware during ‘show’, or need 

periodic age update from switch driver
Kernel ageing
● definitely need periodic age update from switch driver



STP offload
STP
● bridge driver maintains STP states (either kernel STP or 

userspace STP)
● bridge driver communicates STP states to switch driver 

using switchdev offload API
● OR a switch driver in userspace can listen to STP state 

notifications to update HW state
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IGMP snooping offload
● switch driver configures hardware to send IGMP reports 

and queries to software
● bridge driver maintains IGMP group membership
● in some cases the reports or queries need to be re-

forwarded in the kernel



VXLAN offload - hardware vtep
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VXLAN offload - hardware vtep
Model
● VXLAN link as bridge port

○ bridging between local ports
○ VXLAN tunneling for remote MACs

● BUM traffic handling
○ multicast
○ using off-system replicator

■ could have a list of redundant replicators, need to choose ONE out of 
the list of remote dests (per flow or per vni etc.)

○ self replication
■ vtep sends to a list of remote vteps, need to choose ALL of the list of 

remote dests



VXLAN offload - ovsdb integration
Agent to translate ovsdb schema objects to kernel constructs.

OVSDB Linux kernel

logical switch vxlan link + bridge

physical switch tunnel_ip vxlan link local ip

logical port binding bridge member port, vlan

unicast remote mac + physical locator bridge fdb (mac, vlan, dst <remote ip>)

mcast remote mac “unknown” + physical 
locator list

vxlan link default dest

unicast local mac + physical locator bridge fdb (mac, vlan, local dev)
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l3 hardware offload

● Routes via routing daemons go to the kernel
● Unresolved next hops, point to CPU in HW
● switch driver tries to resolve them by probes 

(arping)
● Refresh neigh entries for pkts routed through 

hardware (hit bit provided by hardware)


