
Hardware accelerating Linux network 
functions

Roopa Prabhu, Wilson Kok



Agenda
● Recap: offload models, offload drivers
● Introduction to switch asic hardware
● L2 offload to switch ASIC

○ Mac Learning, ageing
○ stp handling
○ igmp snooping
○ vxlan

● L3 offload to switch ASIC



Offload models ...

NIC1

                                   kernel

port1

bridge

port2

rtnetlink api:
bridge vlan add
bridge fdb add

NIC1

port3

port2port1

NIC2

port2port1

bridge

switch asic

CPU MEMFDB

port4

                                                                 kernel

bridge 

port2 portnport1

port1 port2 portnport1

● Single consistent netlink based 
UAPI

● Single kernel offload API to 
offload to variety of hardware 
(nics, switch asics, ..)

FDB (in sync with hw)FDB

FDB

Rtnetlink API PATH

Offload API path



user

kernel

kernel

iproute2

quagga

mstpd

bridge

brctl

tc

nftables

Routing 
Tables ARP Tables

Bridge 
FDB/MDB

Netfilter 
Tables

Bonds Bridges VXLAN

HW

swp1 swpN

The bigger 
picture...

hw driver

CPU

bird

MEM

OVSdb

snmpd

lldpd

tc

Routing 
Tables ARP Tables Bridge 

FDB/MDB acls



user

kernel

kernel

Bridge br0
FDB/MDB

HW

swpN

HW offload driver (kernel)

netdev_ops {
   .ndo_fdb_add/del                                        
  .ndo_fib_add/del
}

        hw driver

CPU ASIC MEM

br0

swp1

switch ports

swp2

FIB

routing 
daemon

mstp

RTnetlink API

HW
CPU MEMRouting 

Tables ARP Tables Bridge 
FDB/MDB acls

switchdev 
offload API



user

kernel

kernel

Bridge br0
FDB/MDB

HW

swpN

HW offload driver (user space)

                                            
hw driver

CPU ASIC MEM

br0

swp1

rtnetlink 
listener

swp2

FIB

routing 
daemon

mstp

HW
CPU MEMRouting 

Tables ARP Tables Bridge 
FDB/MDB acls

switch ports

RtNetlink 
notifications

rtnetlink API

HW
CPU ASIC MEM

HW
CPU MEMRouting 

Tables ARP Tables Bridge 
FDB/MDB acls



kernel

switch hardware

 switch hardware

netdevs for each front 
panel ports

cpu port

front panel ports

switch 
driver

swp1 swp2 swp3
swpn

1   2   3    n

switch driver:

● Creates netdevs for front 
panel ports

● Port netdevs only see traffic 
forwarded to the CPU port

● Sets hardware offload flag
NETIF_F_HW_SWITCH_OFFLOAD

on netdevs



ip link show switch ports

# ip link show

1: lo: <LOOPBACK> mtu 16436 qdisc noqueue state 
DOWN mode DEFAULT 

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:
00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> 
mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000

    link/ether 00:e0:ec:27:4e:b6 brd ff:ff:ff:ff:ff:ff

3: swp1: <BROADCAST,MULTICAST,UP,LOWER_UP> 
mtu 1500 qdisc pfifo_fast state UP mode DEFAULT 
qlen 500

    link/ether 44:38:39:00:27:ac brd ff:ff:ff:ff:ff:ff

4: swp2: <BROADCAST,MULTICAST> mtu 9000 qdisc 
pfifo_fast state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:b8 brd ff:ff:ff:ff:ff:ff

[snip]

55: swp53: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:f7 brd ff:ff:ff:ff:ff:ff

56: swp54s0: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fb brd ff:ff:ff:ff:ff:ff

57: swp54s1: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fc brd ff:ff:ff:ff:ff:ff

58: swp54s2: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fd brd ff:ff:ff:ff:ff:ff

59: swp54s3: <BROADCAST,MULTICAST> mtu 1500 
qdisc noop state DOWN mode DEFAULT qlen 500

    link/ether 00:e0:ec:27:4e:fe brd ff:ff:ff:ff:ff:ff

management port

switch ports



ethtool on switch port
$ethtool swp1
Settings for swp1:

Supported ports: [ FIBRE ]
Supported link modes:   1000baseT/Full 
                        10000baseT/Full 
Supported pause frame use: Symmetric 

Receive-only
Supports auto-negotiation: Yes
Advertised link modes:  1000baseT/Full 
Advertised pause frame use: No
Advertised auto-negotiation: No
Speed: 10000Mb/s
Duplex: Full
Port: FIBRE
PHYAD: 0

Transceiver: external
Auto-negotiation: off
Current message level: 0x00000000 

(0)
Link detected: yes



Creating a hardware accelerated Linux bridge 
device

# ip link add br0 type bridge

# ip link set dev swp1 master br0

# ip link set dev swp2 master br0

# bridge vlan add vid 10-20 dev swp1

# bridge vlan add vid 20-30 dev swp2



Bonds as bridge ports

NIC1

bridge

     switch asic

CPU MEMFDB

                                                                 kernel

bridge 

port2 portnport1 portn-1

bond0

port1 port2 portn-1 portn

FDB (in sync with hw)

rtnetlink api:
bridge vlan add
bridge fdb add

LAG
bond0 (portn-1, 

portn

switchdev 
offload API

rtnetlink API

bonding driver 

● switch ASICS support 
Link aggregation

● bonding driver LAG 
config is offloaded to the 
switch ASIC 

● fdb and vlan offloads go 
through the bonding 
driver



switch asic

VLAN

Bridging hardware offload: packet path
kernel

swp1

bridge

swp2

swp1 swp2

known unicast (transit)

BUM*

system generated/
destined to system  



Bridging hardware offload: packet path

● Known unicast traffic not destined to system is 
forwarded only in hardware

● BUM traffic is forwarded in hardware plus a copy MAY 
be sent to kernel

● BUM traffic in kernel should not be forwarded again 
(duplicate copies from hardware and software)



Bridging hardware offload: fdb learn

user

kernel

kernel

Bridge br0
FDB/MDB

HW

swp1 swpN

switch driver

CPU ASIC MEM

hw events: learn/move

br0

fdb add/update

swp2rtnetlink

notification

00:11:22:33:44:55
vlan 10
intf_id 9876

00:11:22:33:44:55
br0
swp2



Bridging hardware offload: learning in HW

● Turn off learning in bridge driver
● switch driver listens to learn notifications from hardware
● converts hardware interface id and vlan to kernel ifindex of bridge 

port (and vlan) and bridge
● sends netlink fdb update to kernel (userspace driver) or calls bridge 

driver learn sync switchdev API (kernel driver)



Bridging hardware offload: kernel ageing

user

kernel

kernel

Bridge br0
FDB/MDB

HW

swp1 swpN

switch driver

CPU ASIC MEM

br0

fdb update

swp2rtnetlink

get fdb hit status

fdb delete

fdb delete



Bridging hardware offload: hardware ageing

user

kernel

kernel

Bridge br0
FDB/MDB

HW

swp1 swpN

switch driver

CPU ASIC MEM

br0

fdb delete

swp2rtnetlink

fdb delete



Bridging hardware offload: ageing
Bridge driver very seldom sees packets with hardware offload.  FDB 
age is not up to date.
Hardware ageing
● bridge driver should not do ageing if hardware is doing it
● fdb show will need to get age from hardware during ‘show’, or need 

periodic age update from switch driver
Kernel ageing
● definitely need periodic age update from switch driver



STP offload
STP
● bridge driver maintains STP states (either kernel STP or 

userspace STP)
● bridge driver communicates STP states to switch driver 

using switchdev offload API
● OR a switch driver in userspace can listen to STP state 

notifications to update HW state



switch asic

IGMP snooping offload
kernel

swp1

bridge

swp2

swp1 swp2

report

query
data 

QueryJoin 224.1.2.3 224.1.2.3

dev bridge port swp1 grp 224.1.2.3 temp

router ports on bridge: swp2 



IGMP snooping offload
● switch driver configures hardware to send IGMP reports 

and queries to software
● bridge driver maintains IGMP group membership
● in some cases the reports or queries need to be re-

forwarded in the kernel



VXLAN offload - hardware vtep

swp1

bridge

swp2

swp3

MAC Interface

macA swp1

macB swp2

macC vxlan100

MAC Destination

macC 172.16.21.150

unknown 172.16.22.125

macA macB

macC

lo: 172.16.20.103 vxlan100

172.16.21.150

20.0.0.3 20.0.0.5

20.0.0.2



VXLAN offload - hardware vtep
Model
● VXLAN link as bridge port

○ bridging between local ports
○ VXLAN tunneling for remote MACs

● BUM traffic handling
○ multicast
○ using off-system replicator

■ could have a list of redundant replicators, need to choose ONE out of 
the list of remote dests (per flow or per vni etc.)

○ self replication
■ vtep sends to a list of remote vteps, need to choose ALL of the list of 

remote dests



VXLAN offload - ovsdb integration
Agent to translate ovsdb schema objects to kernel constructs.

OVSDB Linux kernel

logical switch vxlan link + bridge

physical switch tunnel_ip vxlan link local ip

logical port binding bridge member port, vlan

unicast remote mac + physical locator bridge fdb (mac, vlan, dst <remote ip>)

mcast remote mac “unknown” + physical 
locator list

vxlan link default dest

unicast local mac + physical locator bridge fdb (mac, vlan, local dev)



user

kernel

kernel

          FIB

HW

swp1 swpN

l3 offloads

switch driver
                                            

CPU ASIC MEM

swp2

ip route add 1.1.1.1/32 
nexthop via 
192.168.200.3 nexthop 
via 192.168.200.4

Routing Tables Neigh tables

Quagga/Bird
                                            

rtnetlink API pathiproute
                                            

Network 
manager

                                            

offload API path

neigh table

arping for 
unresolved 

nexthop



l3 hardware offload

● Routes via routing daemons go to the kernel
● Unresolved next hops, point to CPU in HW
● switch driver tries to resolve them by probes 

(arping)
● Refresh neigh entries for pkts routed through 

hardware (hit bit provided by hardware)


